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ABSTRACT 

There are several problems that limit the availability of modern-type 

helicopters that the German Army has been acquiring during the last ten years, 

including inspection policies, reliability, spare parts availability, and the number of 

personnel devoted to aircraft maintenance.    

The goal of this thesis is to identify factors that could lead to measurable 

improvement in operational availability and flight-hour supply of the German 

Army helicopter fleet. This research uses statistical analysis of failure-time data 

and a simulation model that emulates the usage and maintenance policies 

adopted by the fleet. The simulation model reflects normal daily operating and 

maintenance activities and manages individual aircraft with respect to flying 

operations and maintenance activities, including extensive scheduled 

inspections, non-recurring special inspections, and failure-driven unscheduled 

maintenance actions for each aircraft on a daily basis.   

The model reproduces recent historical trends accurately. It provides 

useful insights about the future availability of the German Army helicopter fleet by 

keeping current policies in place and making investments in the maintenance 

system. Without such investments, availability can be expected to decline over 

the next several years. By increasing maintenance assets, the decline can be 

reduced in a quantifiable manner. 
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EXECUTIVE SUMMARY 

From the beginning of the procurement phase accompanying the 

transition to the UH TIGER multi-role attack helicopter in 2005, the availability of 

the German Army aircraft fleet has been undermined by a complex mix of 

logistical challenges. In this thesis, we present a simulation model that can be 

exercised to examine the effects of a set of policy changes that have been 

proposed to improve availability of the TIGER fleet. The simulation model 

incorporates several factors that are known to affect availability, including those 

that address maintenance policy and reliability. By applying the model to fleet 

data, the model response can be used to predict the impact of changes in these 

factors on fleet availability, flight hour supply, mission accomplishment, and 

utilization of maintenance capacity.  

Visual displays of the results of exercising the model convey useful 

insights to support management decisions. Each measure of effectiveness can 

be evaluated as a function of the input factors or as a function of time. The model 

has a generic architecture, which makes it easy to adapt to changing fleet 

dynamics or to different aircraft types. Simulation input values may be derived 

from actual fleet data or specified by probability distributions. Simulation output 

can be tailored to the needs of the user, either generated by using designed 

experiments and then fit with sophisticated metamodels, or provided as a single 

time series output for a scenario of interest. 

Data analysis plays an important role in shaping the simulation model. 

Data on aircraft failure times obtained from the TIGER fleet over a three-year 

period is used to estimate the parameters of Weibull probability distributions that 

are integrated into the simulation model. This allows the model to reflect the 

reliability characteristics of the fleet. In addition, data on maintenance times from 

the fleet are randomly resampled when running the model to enhance model 

realism. The use of a simulation model to represent the behavior of the system 

under theoretical scenarios invites skepticism unless it is shown that the model 



 xx 

can reproduce known behavior of the system under applicable conditions. 

Demonstrating that the model captures realism in the system under investigation 

is known as validation. By implementing a rule set that describes the current 

fleet, including flight safety standards, and by using live fleet data, we validate 

our simulation model by comparing its output to conditions in the fleet that 

existed during the period April 2015 through December 2016. Focusing on the 

rate of availability of aircraft, we show that the mean deviation of the model 

output from actual availability during this period is approximately 4.3%. Figure 1 

shows the model output relative to actual availability over time. The German 

Army accepted these results as sufficient to accredit the model for examining the 

response of the TIGER fleet to various policy options under consideration. 

 

Validation result for MOE availability rate from period April 1, 2015-Dec. 31. 
2016. For classification reasons, values on the y-axis are not presented. 

Figure 1. Comparison of Simulated Outcome for Fleet Availability Rate with 
Historical Fleet Availability Data (ε = 4.3%) 

 

By utilizing the final aircraft fleet model, we quantify the impact of each 

factor on fleet performance using appropriate measures of effectiveness, which 



xxi 

we use to formulate recommendations for fleet management with reference to 

the current status of the TIGER fleet, which we define as the base case. Several 

alternate maintenance policies are evaluated at different levels of yearly fleet 

utilization. Although improvement in fleet availability and flight-hour supply could 

be achieved by improving any of the factors under consideration (decreasing 

inspection duration, increasing maintenance assets, or increasing mean time 

between failure), any such improvement carries costs. For this reason, we 

evaluate improvement scenarios chosen in consultation with the German Army, 

which represent goals that the sponsor views as useful for consideration.    

At the current utilization level of 80 flight hours per aircraft per year, a 60% 

reduction in inspection time coupled with a 25% increase in maintenance assets 

would produce broad improvement in availability and flight supply but would not 

meet the mission-completion goal or reverse a declining trend in availability after 

achieving a maximum several years into the future. We assume that reduction in 

inspection duration could be achieved without reducing the quality of inspections. 

In any scenario, meeting the mission-completion goal could be achieved only 

with a substantial improvement in aircraft reliability, which is a concerning but 

important insight. Furthermore, in each of the scenarios considered, availability 

would decline after achieving a maximum value several years into the future, 

although the decline would be less in scenarios that imply the greatest level of 

improvement in inspection duration, maintenance assets, or reliability. At higher 

levels of fleet utilization, such as 120 flight hours per year per aircraft, 

improvement in reliability is a practical necessity to achieve sustainable fleet 

performance. 

Common features of all recommendations are that the inspection duration 

should be reduced by at least 60% while simultaneously increasing maintenance 

capacity by at least 25% to achieve a sustainable fleet performance at a 

satisfactory level.  

An analysis approach using simulation to gain insight about the systemic 

behavior of an aircraft fleet has never been attempted within the German Army 



 xxii 

aviation forces before. Having an analysis tool that can be used on any standard 

computer to produce meaningful assistance for quick-turnaround management 

decision-making is a huge step forward, especially given the complexity of the 

aircraft and the guideline, procedural, and technology constraints that fleet 

managers must confront. The German Army now has the capability to make the 

most out of its operational fleet data. If maintained properly, the model’s flexible 

architecture is adaptable to any kind of system changes in the future, and can 

incorporate other flying weapon systems. This thesis explores uncharted waters 

and should be considered as a guide for future analysis projects and further tool 

development to support fleet management.  
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I. INTRODUCTION 

A. CHALLENGES 

Since 2005, the German Army has operated a fleet of a new attack 

helicopter type, called UH TIGER. Even today, after the initial evaluation phase 

of pre-series models ended four years ago and the fleet accomplished an 18-

month deployment cycle in Afghanistan, the procurement process still is not 

finished. While aircraft availability is not easy to maintain with a small fleet in the 

early years of acquisition, with logistical supply processes still under 

development, the now aging fleet continues to lack sustainable availability. The 

major challenges to fleet management are a growing fleet size, long-lasting 

inspection turnaround times, maintenance policies under review, lack of 

availability of certain vital equipment and parts, and the system reliability, to 

name only a few. This thesis is dedicated to providing insight into the impact of 

some of these factors on fleet availability as well as flight hour supply, and 

contributing to the decision-making process by quantifying optimization potential. 

The results should be used as a foundation for a living product that can be 

adjusted and for future application.  

B. SCOPE AND OBJECTIVE 

1. Scope 

The scope of this thesis is to develop and implement a simulation model 

that best maps the systematic behavior of the TIGER attack helicopter fleet 

regarding various factors, including phase maintenance inspection system, 

logistics, personnel, mission assignment, unscheduled maintenance, and 

inventory and maintenance policies.  

Despite the level of detail defined in the work agreement, by the end of 

this study the simulation model will cover the aircraft fleet down to the level of the 

individual helicopter object. It includes their properties, derived by data analysis 

performed during the study, including daily flight-hour demand generation, 
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scheduling of aircraft deliveries, daily flight assignment, failure generation, non-

recurring special inspection event scheduling and implementation of various 

maintenance policies. The next logical step is to include higher fidelity into the 

model down to the level of the major subsystems called main equipment and 

specific critical spare parts with their corresponding individual properties, such as 

underlying inspection system, flying hours, required personnel and failure 

behavior. This will allow evaluation of many more factors and effects connected 

with specific defined key equipment of interest. Due to time constraints, further 

work will be required beyond this thesis. Once finished, the model is intended to 

serve as a tool to assist in the decision-making process in German Army 

Aviation. It is designed generically for adaptation to other helicopter types—

specifically, for allocation of assets and evaluation of factors for further contract 

design. 

2. Objective 

The objectives of this study are as follows: 

 The development and implementation of a simulation-based model 
for the German UH TIGER fleet that includes the factors that 
significantly influence operational availability of the fleet;  

 The evaluation and quantification of the impact imposed by different 
maintenance policies, aircraft reliability, inspection duration and 
changes in maintenance capacity on fleet availability and flight hour 
supply (bank time) over time within an increasing fleet size based 
on the given data.   

3.  Basic Research Questions  

 What factors drive the systematic behavior of the German UH 
TIGER fleet regarding operational availability and flight hour supply, 
and which mathematical descriptions best fit the evaluated behavior 
of these factors? 

 How does the maintenance system respond to changing rates in 
demand of helicopters and flight hours for helicopter operations 
(fleet utilization) on a daily basis? 
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 How do inspection turnaround times and failure repair times
influence operational availability?

 How do measures such as changes in maintenance capacity,
allocation of personnel, and maintenance policies like inspection
systems affect operational availability and bank time? Can these
effects be quantified?

 How does availability of specific subsystems and spare parts
influence operational availability?

 With respect to factors specified above, how can a fleet utilization
of 120 flight hours per aircraft per year be instantiated on an 80%
accomplishment level while simultaneously maintaining a daily
availability of ten aircraft?

 How do resulting recommendations affect dock utilization?

 How can simulation optimization and data farming techniques be
used to answer these questions robustly, given uncertainty in
significant factors and system performance?

C. BACKGROUND 

1. German Army Attack Helicopter Fleet

During the Cold War, Germany faced the imminent threat of possible 

military aggression imposed by the Warsaw Pact along the Iron Curtain. Possible 

scenarios included massive military strikes by heavy armored battle groups from 

the east. Therefore, the front line in West Germany was structured in combat 

zones from north to south with areas of responsibility for German and Allied 

troops (Figure 1). Later, during the Vietnam War in the 1960s and 1970s, attack 

helicopters became a popular force multiplier, allowing support for boots on the 

ground via close air support and air strikes, and providing air transport 

capabilities. 
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Iron Curtain with anticipated NATO/Warsaw Pact force structures and German 
anti-tank regiment locations during the Cold War. Highlighted locations are as 
follows: (1) Hohenlockstedt, (2) Celle, (3) Fritzlar, and (4) Roth. 

Figure 1.  NATO Forward Strategy—Central Region in the 1980s. 
Adapted from Kuersener. (2013). 

In the late 1970s, to strengthen the front line in Europe the German Army 

was equipped with BO-105 anti-tank helicopters, which could carry up to six HOT 

3 wire-guided anti-tank missiles with a range of about 2.6 miles (Figure 2). Each 

wing of five helicopters was capable of taking out more than a complete armored 

company, without having any self-defense capability. Overall, three regiments 

with 60 helicopters each and a fourth mixed regiment were commissioned and 

maintained throughout the German-German border, as shown in Figure 1. 

According to Fiorenca (2016), in total, 312 BO-105 helicopters were taken into 

service in the German Army for anti-tank and transport purposes throughout the 

platform’s life cycle.  
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Figure 2.  MBB BO-105 PAH-1. Source: Hecker (2008). 

While helicopters as a platform for air-to-ground combat and air defense 

systems became more mature and advanced, the BO-105 helicopter and its main 

weapon system soon became outdated. Hence, Germany and France started to 

develop a new anti-tank helicopter in cooperation with Aerospatiale and 

Messerschmitt-Bölkow-Blohm (MBB) in 1984. MBB emerged from Messerschmitt 

AG, Bölkow and the aviation division of Blohm+Voss. It was bought by Deutsche 

Aerospace AG (DASA) in 1989, which finally merged with Aerospatiale in 1992. 

The resulting company was formerly called Eurocopter Group and is now known 

as Airbus Helicopters (Gunston, 2005). The first prototype took off for its maiden 

flight on 27 April 1991. With the end of the Cold War (and, thus, the Warsaw 

Pact), the major threat has vanished. Out of area mission deployments (e.g., 

Kuwait in 1992 and the Balkan Wars during the 1990s) shaped the new defense 

reality, with new challenges and perspectives to military capabilities. During 

these years, the multi-role doctrine for new weapon systems became popular in 

Europe to face the new combat challenges and tight budgets. Hence, the 

specifications for the German anti-tank platform were modified to include armed 

battlefield reconnaissance, close air support, active and passive self-defense, 

and air escort capabilities. These major changes led to a significant increase in 

combat power and value, but also added additional constraints to the engineering 
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processes, which induced major delays for the actual aircraft deliveries to the 

fleet. While the BO-105 started its third decade in service, the anti-tank helicopter 

regiments have been reduced from four to one due to severe budget cutbacks. 

Furthermore, Spain and Australia joined the TIGER community. In 2005, the first 

five UH TIGER Step 1 aircraft, one of five basic model type variants, were 

delivered to the German Army and deployed in LeLuc en Provence, France, to 

serve as pilot type-based flight training providers. The final phase of delivery 

started in August 2008 with the first fully mission-capable pre-series models, and 

ended in 2010 with the final-series Step 2 helicopters. These all were delivered to 

Attack Helicopter Regiment 36 in Fritzlar, Germany, which now is the last 

remaining attack helicopter regiment.  

2. Attack Helicopter UH TIGER 

The EC665, or Airbus Helicopter TIGER, (Figure 3) is a four-bladed, twin-

engine multi-role attack helicopter with an airframe built from lightweight carbon-

fiber composite materials and advanced avionic and optronic systems.  

 

Figure 3.  German Multi-role Attack Helicopter UH TIGER. 
Source: Global Military Review (2013). 

It is capable of operating day and night and within a broad spectrum of 

weather conditions. Its gross weight at takeoff is about 6 tons and mission 



 7 

endurance without external tanks is up to three hours (McGowen, 2005). 

Nowadays, the system is used by four nations in four basic model types.  

The model type used by the German Army is called the UH TIGER. This 

helicopter is able to carry five different weapon types in a single setup or weapon mix, 

suitable for different assignments like armed reconnaissance, air and ground escort, 

air-to-air combat, ground fire support, destruction, and anti-tank warfare. In addition, 

with the optional exterior fuel tank, a higher combat range or transition range can be 

achieved. The weapon mix includes HOT 3, PARS 3 LR anti-tank missiles, Hydra 

70mm unguided rockets, a 12.7 mm GunPod and AIM-92 Stinger air-to-air missiles 

(Airbus Helicopters, 2015). Due to its design the TIGER’s agility during flight, 

combined with its flat and narrow silhouette, low radar and infrared signature and 

passive CHAFF/FLARE weapon system, results in a significantly reduced vulnerability 

on the battlefield. Its survivability is further enhanced by ballistic protection in later 

versions, high crashworthiness, self-sealing tanks, and system architecture with 

designed-in redundancies and segregation. In addition, the UH TIGER has a mast-

mounted sight, OSIRIS, which provides long-range target identification with a range 

over three miles and under-cover targeting capabilities. Overall, the UH TIGER is a 

state-of-the-art attack helicopter, which represents a major battlefield capability that 

significantly increases combat value and tactical flexibility in the modern joint combat 

environment and world-wide mission deployment. The German and the French 

systems have proven their combat readiness during missions in Afghanistan and Mali.  

3. Fleet Development  

The original plan was to procure 80 UH TIGERs, but budget constraints 

along with the end of the conscript system in the Bundeswehr forced the German 

government to restructure their Army and to close down one of the last two 

Attack Helicopter Regiments in Roth, Bavaria. This included a reduction of the 

total number of procured helicopters to 53. The system itself went through a 

development process, which included the German Army in the final phase to 

provide on-the-job training for pilots and maintainers as well as increase reliability 
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by using company and military experience during mission readiness evaluation. 

This was a process with no precedent, other than the transport helicopter NH-90 

project at that time. It revealed lots of infant mortality issues and warranty cases, 

and put pressure on the relationship between Airbus Helicopters and the German 

Army. To increase delivery speed and meet the demand for the ISAF mission in 

Afghanistan, aircraft were delivered in several development steps and model 

variants from 2005 to the present, which still influences fleet dynamics and in fact 

is one of the big challenges of this study. Currently in its retirement phase, the 

first model (only capable of performing in-flight and maintenance training) was 

the Step 1 model delivered in 2005. Still in service today and due for retrofit is the 

PBL-002 variant, which was delivered between 2008 and 2010. It was the first to 

allow shooting and therefore made pilot combat training possible. After 2010, the 

final series helicopter Step 2 models were delivered but soon had to be changed 

in design to be mission ready for the Afghanistan deployment between February 

2013 and summer 2014. Henceforth, aircraft were delivered with an additional 

fourth radio for international ground troop communications, ballistic protection for 

the pilot, and additional equipment like sand filters and onboard video recording 

technology. These were the Step 2 G-Com, Afghanistan Stabilization German 

Army Rapid Deployment (ASGARD) F and ASGARD T models of the German 

UH TIGER helicopter variants. These different models essentially have the same 

capabilities, with some important exceptions like operability in sandy and hostile 

environments. Therefore, some of the helicopters are preferred, even demanded, 

over others. Also, the delivery process is long lasting and dependent on many 

factors. The timing of deliveries reflects production schedules intended to 

achieve high manufacturing productivity and to make sustainable fleet 

management easier in terms of consistent aircraft and maintenance facility 

utilization. In summary, the German Attack Helicopter Fleet (henceforth referred 

to as the “fleet”) is not homogeneous and is still growing in numbers.  

The time frame of this thesis covers an open-ended interval starting on  

April 1, 2015. Hence, the fleet includes all individual aircraft currently in the fleet 



 9 

at that point in time, excluding aircraft already in retirement phase due to their 

pre-series equipment status. Due to classification purposes this thesis will refer 

to individual aircraft by an anonymous integer rather than using their real tail 

number. Starting with 27 aircraft, the delivery dates implemented into the 

simulation model are mapped to the individual Certificate of Conformity (CoC) 

Dates, which mark the legal hand-over date on which the aircraft were turned 

over by Airbus Helicopters to the German Army. During that period data access 

is frozen, aircraft data is migrated into the automated management system SAP 

Standard Product Family (SASPF), and the usage clock starts to run with the 

amount of the current flight hours reported. In total, the simulation model handles 

delivery of 26 new aircraft from production to the fleet in a five-year period, while 

producing accurate outputs under the assumptions described in Chapter II. This 

results in a total of 53 aircraft as the end-state of fleet size as it is defined by 

management today. Ultimately, management plans to retrofit all aircraft to the 

ASGARD model over time, to ensure consistent operational capability across the 

fleet. This will influence fleet dynamics in the near future, but will not be covered 

by this study. This might be considered in future work described in Chapter V.  

Despite the enormous procurement and life cycle cost of the new TIGER 

helicopter fleet of the German Army, operational availability continues to lag 

operational requirements. In the scope of a ministerial task force, a 

comprehensive catalog of measures has been applied to the system. Among 

these, optimization of availability of time-critical items (TCI) and spare parts has 

shown positive results, which now must be carefully evaluated. 

4. Fleet Management 

The logistical and maintenance systems of flying weapon systems in the 

Bundeswehr, especially in the rollout phase with incomplete procurement as well 

as on-going development, follow a highly complex landscape of guidelines and 

procedures that operate under a broad spectrum of driving factors. First of all, 

and most importantly, flight safety guidelines have to be maintained. These are 
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rules with a wider range and are far more rigid than guidelines for any ground-

based system. They are the anchor for every operating and maintenance action 

as well as for logistical procedures. Each helicopter as an individual element is a 

complex system containing five different subsystems: airframe, electronics, 

avionics, structure, and weaponry. From a technical standpoint, it has a lot of 

unique properties besides its model type, such as mission status, failure behavior 

(reliability), and equipment status. Also, operational limitations may be 

applicable. Built-in equipment, spare parts, ground support equipment, material 

connected to the aircraft in general, and personnel have to be certified for use 

and work in and around the aircraft. Every spare part exchange from main 

equipment, engines or main gear boxes—down to each nut and bolt—has to be 

reported and documented in a proper way. There even exists a life-cycle file for 

each aircraft to store all reports and management forms from the first flight to 

decommissioning, in addition to the computer-based SASPF management 

system. For most maintenance actions, a so-called “six-eye” procedure has to be 

applied, meaning the work has to be performed by the mechanic, observed by a 

maintenance crew chief, and inspected by quality assurance personnel before 

the aircraft is allowed to be assigned for flight missions again. The flow of 

maintenance actions across an aircraft’s lifetime consists of unscheduled 

maintenance due to failures, non-recurring special inspections, and mandatory 

scheduled maintenance procedures following a detailed two-dimensional (usage- 

and calendar-based) maintenance policy: the inspection system. Even some of 

the subsystems or main equipment like the engines have an additional inspection 

system, and therefore maintenance intervals of their own, which dictate when 

maintenance actions are due, and which also reduce availability of the aircraft. In 

addition, technical orders from the manufacturer (Airbus Helicopters) or the 

Army’s in-service fleet management might pop up any time and cause downtime 

of single aircraft or the whole fleet due to immediate maintenance actions 

resulting from some fleetwide observed technical event. In addition to 

maintenance policies, there are other logistical factors and dependencies that 
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also influence fleet performance, such as availability of spare parts, material, 

certified specialists, and valid regulations.  

Fleet management must navigate through rough waters in order to meet 

all requirements and flight safety standards and still provide a high operational 

readiness level of the fleet. As an indicator of fleet-performance, operational 

availability rate—which is the proportion of aircraft in the fleet ready for flight 

assignment each day—represents the major measure of effectiveness besides 

flight hour supply (bank time). Flight hour supply is defined as the sum of each 

aircraft’s number of flight hours until next scheduled major maintenance 

inspection. Also, the percentage of fulfilled flight hour demand per year is of 

interest to the sponsor. Therefore, these figures or some derivatives of them are 

used as response variables in modeling and are described in depth in Chapter III. 

5. Organization of TIGER Aviation Maintenance

The German Army has grouped aviation capabilities in the Division Rapid 

Reaction Forces (DSK) located in Stadtallendorf, Germany. The primary home of 

the UH TIGER attack helicopter is Attack Helicopter Regiment 36 – Kurhessen 

located in Fritzlar. Moreover, Germany has the German/French training facilities 

in LeLuc en Provence, France and Fassberg, Germany. Figure 4 provides an 

overview of the structure. The maintenance organization in the German Army 

has three major parts: staff and supply, line maintenance, and deep level phase 

maintenance. All these elements are combined in Regiment 36 for TIGER aircraft 

maintenance. Additional external components are the Department of TIGER 

Capability Development and Department of In-Service Operational System and 

Supply Management, which is the sponsor of this thesis.  
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DSK consists of the following organizational entities (from left to right): (1) 1
st
 

Airmobile Brigade, Saarlouis (Germany), (2) 11
th
 Airmobile Brigade, 

Schaarsbergen (Netherlands), (3) German Army Special Forces, Calw 
(Germany), (4) Attack Helicopter Regiment 36, Fritzlar (Germany), (5) Transport 
Helicopter Regiment 10, Fassberg (Germany), (6) Transport Helicopter Regiment 
30, Niederstetten (Germany) and (7) System Center of Excellence TIGER in 
Ottobrunn (Germany) 

Figure 4.  Force Structure, Including Maintenance Units 

Line maintenance for daily flight operations is conducted by the line 

maintenance units and spans maintenance tasks like pre-, turnaround, and post-

flight inspections, failure repair, aircraft configuration changes, minor usage-

based interval inspections, and special inspections up to a certain level of detail. 

Deep level phase maintenance (major overhaul or major inspections) contains a 

large number of maintenance actions and occurs according to the underlying 

aircraft inspection system on a calendar and usage interval basis. It is an intense 

procedure with a high degree of disassembly of main equipment groups and 

spare parts, with visual inspections to a high degree of detail. These procedures 

require special equipment, tools, and infrastructure called aircraft docks, as well 

as specialized equipment overhaul shops. Deep level maintenance capability is 

performed only by the heavy maintenance unit in AHRgt 36 with a certain 

capacity of aircraft docks and potentially additional capacity provided on a 

contract basis by industry. Therefore, aircraft due for deep level maintenance at 

the training facility have to be transferred for large-scale inspections. 
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D. LITERATURE REVIEW 

1. Model Architecture 

With reference to Lucas et al. (2015), simulation as methodology for 

systems analysis has gained significance within the scientific community 

throughout the last decades due to dramatically advanced computing hardware, 

simulation modeling paradigms, simulation software, and design-and-analysis 

methods. The authors claim: “When applied properly, simulation can provide fully 

as much insight, with as much precision as desired, as can exact analytical 

methods that are based on more restrictive assumptions” (p. 1, abstract). 

Furthermore: “The fundamental advantage of simulation is that it can tolerate far 

less restrictive modeling assumptions, leading to an underlying model that is 

more reflective of reality and thus more valid, leading to better decisions” (p. 1, 

abstract). In a variety of complex problems, like an aircraft fleet analysis, cost 

and long-term impact on fleet performance that make use of live experiments 

often infeasible for study purposes. Hence, simulation is often the only path to 

gain insight into a problem with manageable costs and almost no risk of collateral 

damage. 

After finalizing the problem definition with the sponsor, we chose 

simulation as our method due to the complexity of the problem and inherent 

uncertainty of factors. The central subject of this study became building a 

simulation analysis tool for the German TIGER aircraft fleet as the underlying 

system of interest in order to analyze important factors that drive fleet dynamics 

from a maintenance-focused perspective. The major metric of interest is 

operational availability of the aircraft fleet as determined by the factors discussed 

earlier. During the literature review, I came across several approaches to similar 

research topics regarding availability of an aircraft fleet. For example, Mattila, 

Virtanen and Ravio (2008) made contributions to improved fleet management 

decisions in the Finnish Air Force by using an Arena Discrete-Event-Simulation 

(DES) model for quantifying fleet availability during peacetime and combat 

situations. Marlow and Novak (2013) used a MATLAB-based DES model to 
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determine fleet size of Australian naval combat helicopters for land-based 

training and naval deployment cycles. Rais (2016) looked at personnel 

requirements for the Malaysian Army’s new utility helicopter fleet using a DES 

model implemented in Simio. The common element of all these approaches was 

discrete-event simulation, which Law (2013) describes as the “model of a system 

that evolves over time by a representation in which the state variables change 

instantaneously at separate points in time” (p. 6, section 1.3). The major 

properties of all these models can best be summarized as discrete, dynamic and 

stochastic. With respect to the given study examples, it was obvious to consider 

DES as the methodology of choice. Since the operational utilization of an aircraft 

fleet is conducted on a calendar-driven basis, including various factors influenced 

by uncertainty that drive fleet condition over time, DES in fact turned out to serve 

well for the purpose of this study. As a last reference with respect to 

methodology, I would like to mention a second simulation study in collaboration 

with industry that is currently being established by the sponsor, although there 

are no publications or usable results yet. The focus of this study is the inventory 

policies for spare parts and components, and it should shed light on the impact of 

delivery lead times and inventory policies and development over time.  

Although the cited studies have used the same modeling approach to 

solve similar problems, there are differences in the very nature of these problems 

in comparison to ours that are significant enough to distinguish between them. 

Another common element of previous studies is that one of the underlying major 

assumptions was homogeneity throughout the modeled fleet, consisting of 

aircraft entities that share the same input parameters and hence obey the same 

rules of behavior by using common parametric distributions when generating 

stochastic behavior. Although I did not know if these effects were negligible for 

the simulation at this point, from my own experience in practice I assumed there 

were significant differences between the individual aircraft in terms of aircraft 

failure behavior and other characteristics. This was supported by the actual 

failure data, which exhibited huge differences regarding the number of failures for 
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different aircraft over the same time span. Therefore, I agreed with subject-matter 

experts from the sponsor’s department to model individual aircraft objects rather 

than a homogeneous fleet.  

In addition, three other major differences stand out in comparison to 

previous work in modeling methodology.  

1. Because of aircraft deliveries and retirement of pre-series models,
fleet size over time was not constant.

2. Because interest was focused especially on modeling the near-
future timeframe, the fixed fleet state at t0 given by fleet data
defined the starting point for the simulated time horizon. Hence, this
was not a steady-state evaluation with a specific warm-up period.
All simulated outcomes were important for both the analysis and
the validation process

3. Because non-recurring special events such as technical orders 
from the manufacturer or government (“service bulletins”), TCI 
changes, hard landings, over-torque, or extraordinary maintenance 
events like equipment issues and warranty related cases were not 
included in prior studies referenced above, their impact on 
availability was not covered.

These events and their processing times are not easily modeled with 

parametric distributions, but they all are assumed to have a fair amount of impact 

on fleet dynamics. An urgent technical order (“TIGER safety warning”), for 

example, could down the whole fleet until measures have been applied, which 

could take several days.  

As described above, the German TIGER Fleet is still very young. For the 

oldest aircraft in the fleet, we are looking at about seven years and an average of 

three years of usage. Also, deliveries are still introducing new aircraft to the fleet 

today, which will remain an ongoing process for the next two years. In addition, 

existing aircraft vary in model type. For standardization of capabilities there will 

be a retrofit procedure in the near future, which also comes into play. To be that 

flexible in modeling and to keep future study cost low, free software like Python 

(Python Software Foundation, 2010) and R (R Core Team, 2016) are used 

instead of ‘commercial off the shelf’ software products for further corporate use. 
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They are more than capable of doing the job. The model is supposed to be 

expandable with new features, which cannot be applied easily using Simio, for 

example, which is a powerful tool for modeling queueing systems but very limited 

when it comes to object entity variations, detail, and extraordinary event 

influences on the system. Therefore, the model was developed using the open 

source language Python 2.7 with its NumPy library by van der Walt, S., Colbert, 

S. C., & Varoquaux, G. (2011). SimpleKit by Oliver and Sanchez (2015) was 

utilized as the DES scheduling engine. 

2. Data and Model Detail 

Model detail is a very important aspect of building a simulation model. Law 

(2015) stressed this aspect a lot in his text. Detail is important for a realistic 

representation of system behavior, while having the proper strategy for a 

stepwise implementation and validation procedure is very important for tracking 

down erroneous behavior due to semantic errors. Too much detail sometimes 

does not add any substantial benefit, but potentially increases computational 

effort and cost. Often, implemented detail also requires specific data generated 

from the system of interest to produce valid results. Mattila, Virtanen and Ravio 

(2008) and Rais (2016) did not have much real fleet data for model 

implementation or did not include real fleet data at all, because it was highly 

classified. Therefore, they had to rely solely on subject-matter-expert opinion, 

which makes validation and accreditation a challenge.  

Because of the excellent support by the sponsor, this study enjoys the 

ability to use real fleet data queried from SASPF and subject-matter-expert 

opinion to support an accurate model fit. Every two weeks, on average, phone 

conferences were held with a team in Germany for about two hours to discuss 

modeling options, data processing, and the interpretation of the information given 

by the data and results. In addition, a one-week business trip to Cologne for 

onsite correspondence and presentation of intermediate results facilitated 

interaction with the sponsor throughout the study. Although limitations regarding 
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sharing content with advisors and publication of results applied due to 

classification, presentation of the generic model, the factor processing 

techniques, and some of anonymized fleet dependent results are feasible for this 

thesis. Because of the data supplied, the model is adjustable in detail to the 

needs of this project.  

While the sources cited above stopped at the aircraft entity level, this 

model is expandable to the equipment and spare parts level by introducing 

equipment objects built into the aircraft object, with their own inspection systems, 

reliability parameters, and more properties. This was designated to be done in 

phase 2 of this project. Due to time constraints, this level of detail was not 

achieved in the thesis, but the interfaces and possibilities will be pointed out in 

the outlook presented in Chapter V. For example, Mattila, Virtanen and Ravio 

(2008) focused solely on the influence of maintenance policies on fleet 

availability regarding battle damage repair and scheduled maintenance in 

peacetime and combat situations, while in this study the maintenance system 

itself is the subject of evaluation with respect to a variety of input factors.  

3. Simulation Design and Analysis  

Law (2015) described outcomes of simulations as “estimates about 

system behavior, which if influenced by uncertainty often are driven by probability 

distributions” (p. 488, section 9.1). Furthermore, he stressed the fact that those 

results are derived from particular realizations of random variables that may have 

large variances. Hence, results derived by single simulation runs could differ 

greatly from the true characteristics of the corresponding model under review. To 

avoid erroneous inferences about the system under study, he pointed out the 

significant importance of input design techniques and mandatory replications for 

model inference. The problem described by this thesis spans several controllable 

decision variables, for example the number of aircraft docks or maintenance 

capacity, and maintenance policy options, to name a few. As another feature, the 

benefits of investments that improve reliability of the individual aircraft can be 
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investigated by changing the MTBF parameters as model inputs. There is always 

more detail that can be implemented in the model, which results in a growing 

number of input factors but also yields the chance of getting more insight into 

fleet dynamics. Several implemented factors are discrete or categorical, like the 

number of aircraft docks or policy options. Some factors are continuous 

variables, like the number of flight hours per aircraft. All factors may have limits 

on values that are interesting to study. For example, a maintenance capacity of 

50 aircraft docks, which is nearly as many as the number of aircraft in the fleet, is 

impractical and not worth evaluating.  

The model is set up to facilitate either designed simulation experiments, or 

single-point excursions, by changing the values of some key model inputs. In 

addition, the simulation output resulting from changes in some factors could also 

be influenced by other factors. To cover these interactions and produce 

statistically meaningful output through simulation, a statistical response surface 

model, called a metamodel, of the simulation model’s behavior is applied by 

utilizing a large nearly orthogonal-and-balanced design of input variables created 

by Vieira (2013). These designs contain different combinations for the input 

variables for each model iteration instead of simply replicating simulation runs at 

their mean values. In total, all input design points in the factor space built on 

these factor combination variations cover a significant proportion of the whole 

factor space. To save computational effort, enable coverage of nonlinearities and 

interactions, and ensure a nearly orthogonal coverage of the factor space, a 

nearly orthogonal-and-balanced version (NOB) design created by Vieira (2013) is 

used for the study (see Vieira et al. 2013 for more details about this type of 

design). Details regarding the specific factors and ranges for the simulation input 

design for this study can be found in Chapter II. In addition, several Ruby tools 

for automated execution of simulation model files with input handling through 

comma-separated value (CSV) files, comma extraction and error handling were 

used as a data farming wrapper for heavy duty simulation output processing 

(Sanchez, n.d.).  
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4. Data Analysis

Besides developing the simulation model, a fair amount of data analysis 

had to be done for factor and results analysis. The core tasks were a derivation 

of confidence intervals for input parameters, and modeling the aircraft failure 

behavior. As a side product, maximum likelihood estimation was used to derive 

Weibull survival functions for individual aircraft as described by Meeker and 

Escobar (1998).  

A central element of data analysis was the modeling of aircraft failure 

behavior. Due to the vast number of applications regarding analysis of 

survivability data in recent decades of scientific work, two approaches were 

obvious to use for this purpose. (1) The exponential distribution is widely used for 

biological and medical survivability data, and (2) the Weibull distribution is used 

for product reliability of mechanical components. Nelson (1982) described the 

distribution developed by Waloddi Weibull in 1951 as useful in a great variety of 

applications, especially for evaluation of product life and strength of certain 

materials. For testing purposes both approaches were used throughout this 

study. In practice, the survival package in R by. Therneau (2017), especially the 

survfit and survreg functions, was used to produce analysis results. For 

achievement of a proper model fit, two methods were used to derive distribution 

parameters, which are described in the next chapter. In the Weibull case, 

maximum likelihood estimation described by both Meeker and Escobar (1998) 

and Nelson (1982) was utilized to fit shape and scale parameters for each 

aircraft.  

Finally, simulation output data was analyzed with the linear regression 

analysis described by Faraway (2015, 2016). In practice, two R functions were 

utilized to produce results: the lm function by Ross Ihaka, which is based on 

Wilkinson and Rogers (1973), and the predict function. Logistic regression 

metamodels fit to the output of the experiment allow a wide spectrum of the 

response surface to be studied instead of focusing on one specific research 

question. 
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II. METHODOLOGY  

A. FRAMING THE PROBLEM  

In the introduction given in Chapter I, the subject matter of this study has 

been sketched out briefly. This chapter is about how the problem has been 

approached, framed, and broken into actions before the actual coding phase 

began. These actions include the general modeling approach, scope of factor 

and model state-spaces, response and measure of effectiveness definition and, 

most importantly, the model assumptions made. Finally, the scope of data 

needed for modeling is outlined, as well as the specification of the model’s input 

and output formats. These action packages also define the structure of this 

chapter. For simplification purposes this study focuses on basic peacetime flight 

operations. Special circumstances of deployment or combat are planned for the 

phase 3 extension-module in future work.  

B. MODELING APPROACH 

The aircraft fleet as the underlying system of interest is a collection of 

individual aircraft entities that are operated on a daily basis throughout the year. 

Each day flight operations like pilot training missions, exercises, or technical 

inspection flights are performed according to a weekly plan. Demand for 

helicopters and flight hours per operation follow a yearly flight plan, which is 

monitored and updated in meetings each day. Due to technical, logistical, and 

personnel fluctuations caused by maintenance issues, management decisions, or 

simply the chaotic implications of life, the actual demand is not deterministic. A 

properly scheduled flight, for example, can be canceled for many reasons, like a 

pilot’s non-availability due to illness, an urgent technical order that downs the 

fleet, or a system failure without replacement, to name a few.  

Aircraft operations require significant efforts in maintenance. Prior to each 

flight, sometimes in between flights, and after each flight, aircraft have to be 

inspected by specialists to ensure proper system operations. Often, failures 
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occur that either require immediate attention prior to the next takeoff or allow for 

actions to be postponed to another time. Aircraft failure occurrence itself is 

stochastic in nature, which is very important for the model. The archetype UH 

TIGER achieves its operational readiness status and operational acceptance 

based on a variety of constraints. One of them is the underlying calendar- and 

usage-based inspection system, which forces operational planning into a certain 

time template, called the maintenance planning schedule. Although there is a 

general 10% tolerance for mandatory limitations on flight hours, this study 

assumes no tolerance. Maintenance procedures affect a number of factors 

which, in turn, affect turnaround time. Fluctuations in key personnel availability of 

maintenance units, availability of spare parts, or delays in performing 

maintenance can result in major delays with respect to turnaround time. The 

inspection task flow is defined by a centralized guideline system, which is 

inherently prone to delays. Hence, the failure repair times and inspection 

durations are stochastic. Additionally, occasional unexpected events happen, 

such as service bulletins from the manufacturer and government institutions, or 

in-flight events caused by pilot misconduct or emergencies. These occurrences 

require special maintenance tasks called non-recurring special inspections. 

Examples are bird strikes, hard landings, over-torques, main gearbox chip 

indications, or collateral impacts from extensive use of onboard weapons.  

Among subject-matter experts, all these effects and events are considered 

important for a proper reflection of systemic behavior through model 

performance. Figure 5 summarizes all these basic aspects in a model-tasking 

overview, which indicates the amount of work to be performed in the modeling 

phase. Input information must be analyzed and formatted for model processing. 

The model layout itself contains necessary functionality capable of digesting and 

converting the input information into the desired output information. Finally, tools 

must be developed to analyze and prepare the output for suitable visualization to 

communicate the results achieved.    



 23 

 
 

Figure 5.  Model Input-to-Output Overview with Additional Parameters 

These modeling implications require some form of time-based scheduling 

for daily flight operations, stochastic operational demand and aircraft failure 

generation, event-driven scheduling of maintenance actions, special tasks 

following from events like hard landing, etc. Each of these features requires 

information to be stored and manipulated through internal fleet data 

management. Fleet state at t0 must be properly defined and initialized, which 

requires input streaming capabilities due to the large volume of data. Law (2015, 

p. 6, section 1.3) classifies simulations with these properties as discrete-event. 

Other goals of the modeling framework are modularity, expandability, and 

adaptability to incorporate aircraft equipment, other aircraft types or machinery.     

C. BASIC RULE HIERARCHY  

We now discuss operational constraints and rule sets that are 

incorporated into the simulation model. 
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1. Flight Safety (Highest Priority) 

Flight safety is the highest-priority constraint. It encompasses rules and 

requirements that always must be satisfied. Only serviceable aircraft are allowed 

to be assigned for flight operations. Aircraft with insufficient flight hour supply due 

to upcoming scheduled maintenance or critical failures must be discarded from 

the set of serviceable aircraft. The calendar- and usage-based age of each 

aircraft must be updated separately. Non-recurring special inspections due to 

extraordinary events must be performed before each takeoff. 

2. Inspection System (High Priority) 

Scheduled maintenance is based on guidelines of the underlying 

inspection system. Modeling the inspection system constraints accurately is 

important, as is recognizing a separation between minor flight hour inspections 

and major deep level inspections. Minor inspections are conducted after 

sufficient flight time is accumulated, although the time of the next major calendar-

based inspection remains fixed. Deep-level maintenance inspections reset the 

calendar-based inspection clock. In cases concerning decoupled calendar-based 

and usage-based inspection systems, flight hours until next inspection is 

renewed only if an accumulated usage-based flight hour inspection is performed. 

In the case of calendar-based inspections, the usage clock is frozen at entry to 

the inspection.  

Deep-level inspection durations are provided as a fixed input for each 

model run. This approach is chosen due to lack of data about the mandatory 

maintenance task network plan, personnel requirements, job performance times, 

and spare part availability. Data on minor usage-based inspections is available 

and used for modeling. 

3. Aircraft Utilization (Medium Priority) 

In practice, fleet management at the regimental level uses a heuristic to ensure 

even monthly utilization across the fleet. Each aircraft is assigned a monthly 
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utilization budget, maintained on a weekly basis, derived from its flight hours to 

next inspection and the expected inspection closure time of aircraft currently 

utilizing a dock space. This procedure is an active measure used to minimize 

dock idle time and wait time for individual aircraft. This effect is depicted in Figure 

6. Ideally, there should be a linear relationship between flight hours until next

inspection across the fleet and the number of aircraft. Aircraft having the greatest 

remaining utilization budget are assigned higher priorities for flight mission 

selection.  

Figure 6.  Fleet Balancing through Use of Monthly Utilization Budgets 

4. Mission Completion Rate (Medium Priority)

The mission completion rate covers the proportion of flight hours actually 

used in the current fiscal year relative to the total demand generated in that year. 

If demand for flight hours exists on a specific day and serviceable aircraft are 

available, the demand will be satisfied even if there is only one aircraft, which will 

be assigned several times. In peacetime, an aircraft usually is not assigned more 

than four times a day. In recent years, the mission completion rate has fluctuated 
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around 80%. Backed by the work agreement with the sponsor, 80% also will be 

determined as a threshold fleet-performance quality measure for the simulation 

model. In general, training missions are performed with one aircraft only. There 

are also squad- and wing-training exercises which include multiple aircraft. 

Mission scenario information is not available and will be ignored in the model.  

Spare aircraft usually are kept mission ready in case of failures by other 

aircraft, but availability of spares is not guaranteed. The data does not contain 

information about the distribution and actual usage of spare availability. Given 

the lack of information, spares are omitted from modeling. 

5. Dock Space Utilization (Medium Priority) 

Because subject-matter experts have not observed long wait times and 

idle maintenance capacities so far, queuing techniques were not considered to 

be a major issue at the outset of this study. Fleet management historically has 

been successful using a monthly utilization budget approach because dock 

capacity has been adequate relative to fleet size. As fleet size grows we can 

expect this to change, possibly requiring new assignment policies. To facilitate 

analysis flexibility, the model tracks waiting queues and dock utilization as 

responses. 

D. MODEL ASSUMPTIONS 

All models are approximations of the actual system and we adopt 

assumptions to overcome the limitations of modeling. The assumptions made for 

this simulation model are defined in the following paragraphs. 

1. General Assumptions 

 Scheduling Timeline – For simplification purposes, this study 
reduces the time scheduling problem to workdays by assuming 
every month has 22 workdays; hence, every year has 264 
workdays. Back-transformation of results to a calendar timeline is 
an easy conversion in Microsoft Excel or R. 
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 Annual Flight-Hour Demand per Aircraft – The average number of
flight hours for each aircraft is the yearly flight plan divided by the
annual average number of aircraft in the fleet, which is assumed to
be the corresponding input parameter for demand computation.

 Flight-Hour Demand per Mission – The demand of flight hours per
mission is a constant quantity for each flight on any given day.

 Seasonal Effects on Flight-Hour Demand – The demand for flight
hours per month is constant across the year.

 Mission Completion – Aircraft fly 100% of the assigned hours,
which is the demand of flight hours generated by the model, barring
a failure. If failure occurs during a mission, aircraft utilization is
determined by the failure time rather than the projected mission
completion time since last failure, further referred to as partial flight
hours (partial FH).

 Mission Status – The original 16 different mission statuses of an
aircraft are reduced to the following:

(a) Clear  mission serviceable; 

(b) Inspection  major calendar-based or accumulated flight 

     hour-based inspection; 

(c) xFHInsp  minor flight hour-based inspection; 

(d) Failure  failure-dependent repair; 

(e) Waiting   waiting for dock space; and 

(f) SpecInsp  non-recurring special inspection. 

2. Maintenance Policy Assumptions

The term “maintenance policy” relates the inspection system to the 

weapon system. It encompasses all calendar- and flight-hour based inspection 

intervals and their relationships to each other. The impact of maintenance policy 

must be considered separately for retrospective and prospective usage:  

 Retrospective – Because maintenance policy changed as of 1 April
2016, the policy implemented must reflect the historical data both
prior to and after the critical date.
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 Prospective – For projecting future system performance, the model 
uses one of four alternative maintenance policies, defined by user 
input, throughout the entire run.   

3. Aircraft Assignment Assumptions 

The aircraft assignment algorithm reflects subject-matter expert opinion. 

The implementation of the assignment algorithm ensures that flight safety rules 

apply. The monthly utilization budget is maintained under the assumption that 

demand completion is prioritized over fleet protection. If there is demand and at 

least one serviceable aircraft is available, this demand will be met even if the 

utilization budget of the currently assigned aircraft is fully consumed, regardless 

of whether this results in negative values for utilization budgets. The utilization 

budget is updated monthly and is assumed to be independent of the current 

utilization of the aircraft docks and residual inspection times.  

4. Failure Generation Assumptions 

Two alternative failure models are considered—one that pools all aircraft 

into a common structural form and one that treats each aircraft individually. The 

final implementation uses a separate Weibull distribution for each aircraft with 

parameters estimated from actual failure data. For aircraft where failure data is 

not available, we use the average of Weibull parameters estimated from the 

younger half of the fleet.   

5. Failure Repair Duration Assumptions 

Repair times are assumed to be independent and identically distributed for 

the entire fleet. This allows the use of bootstrapping for the prospective study. 

Once a failure occurs, it is repaired immediately with a randomly generated draw 

from the given repair time data set under the assumption that line maintenance 

capacity is unlimited, so queueing in line maintenance does not exist. This also 

applies to minor usage-based inspections and non-recurring special inspections. 

Effects due to personnel and spare parts availability are subsumed in the repair 

time data.   
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6. Maintenance Capacity Assumptions 

Maintenance capacity is the number of available aircraft docks. It is 

determined by model input and assumed to remain constant throughout a single 

simulation run, regardless of the time period being covered.  

7. Queueing in Scheduled Maintenance  

Although the daily number of idle aircraft docks will be monitored in the 

model, this study does not focus on queueing protocols. The order in which 

aircraft are processed for phase inspections is ignored. 

E. MEASURES OF EFFECTIVENESS   

Law (2015) claims that “the measures of performance used to validate a 

model should include those that the decision maker will actually use for 

evaluating system designs” (Chapter 5, p. 247). In correspondence with actual 

fleet performance measures, the model generates four measures of 

effectiveness: (1) availability rate; (2) availability gap; (3) flight hour supply; and 

(4) mission completion rate. The model also produces daily dock utilization and 

queue length for output analysis. 

1. Availability Rate 

The most important measure of effectiveness in practice is the fleet 

availability rate, which is the daily number of aircraft available for flight operations 

divided by the total number of aircraft in the fleet.  

2. Availability Gap 

We include availability gap at the request of the sponsor. It is the 

difference between the number of available aircraft and daily demand. Goals 

include finding a parameter setting that results in maintaining a minimum 

threshold of serviceable aircraft, and quantifying the shortfall if the threshold is 

violated. These results are normally used in daily business at the regimental 
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level, in communication with management, and in reports to the Ministry of 

Defense.      

3. Flight Hour Supply 

The daily flight hour supply of the fleet is the sum of flight hours until next 

major inspection across aircraft. This metric influences the yearly flight plan for 

the following fiscal year and reflects utilization of maintenance capacity. Fleet 

management aims to keep the flight hour supply constant. If flight hour supply is 

degraded, it always is a sign that either the fleet is being utilized too much or 

maintenance capacity is unable to keep up with the demand.  

4. Mission Completion Rate 

Mission completion rate quantifies the proportion of the flight hour demand 

that is carried out in actual flight operations. When no serviceable aircraft are 

available or the assigned aircraft has a failure during a mission, the residual 

demand is counted as missed demand.  

F. DATA AND INPUT DATA MODELING 

1. Fleet Data 

Live fleet data was provided by the sponsor using SASPF, the official 

operation management system of the German armed forces. All logistical 

information on the aircraft fleet throughout daily flight operations is collected, 

maintained, and kept available online for distributed access and evaluation on all 

levels in operational processing by the German Army. Because the data is 

classified, equipment with secured access for modeling and analysis was 

provided by the sponsor to ensure proper data handling. Therefore, data usage 

in the scope of this work is presented to a limited degree to demonstrate the 

techniques pioneered in this study and to provide insight to the validation process 

of the final model design. The results presented in Chapter IV are anonymized 

and have been confirmed for public release by the sponsor.  
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A subject-matter-expert team in the system in-service management 

department for the TIGER fleet was commissioned to support this thesis. Regular 

phone conferences were held to discuss ongoing development, challenges, and 

interpretation of the data. This dialog opened new perspectives and possibilities 

of analysis to the entire study team.  

Fleet data prior to January 2014 is not used for modeling purposes, 

because of transient behaviors produced by the small fleet size and a variety of 

extraordinary events such as unorderable spare parts due to missing material 

data, unclarified warranty issues with industry, and the learning curve of 

maintenance personnel. In addition, the Afghanistan mission from spring 2013 

until summer 2014 is excluded, because that period reflects combat conditions. 

Therefore, our analysis is based on data, including daily flight hours for aircraft, 

for 2015 and 2016 only. A work agreement with the sponsor specified 1 April 

2015 as the starting point of the simulation study.  

Data used for this study includes 

 daily flight hours per aircraft for 2015 and 2016; 

 aircraft failure data with short problem description, open date, close 
date, aircraft accumulated flight hours (cell time) at time of 
appearance, and the corresponding failure repair times for the 
period 2014 to 2016; 

 maintenance capacity for scheduled maintenance; 

 inspection turnaround times for major and minor scheduled 
inspections; 

 delivery (CoC) dates for new aircraft deliveries from industry; 

 fleet state at start time of simulation (t0) with cell time, current state 
(clear, inspection, failure), residual time/flight hours to maintenance 
or residual turnaround time/failure repair time and age; and 

 aircraft status history with description for period 2014 to 2016 
including past inspection cycles, failures and non-recurring special 
events.  
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2. Input Data Modeling 

The factor space examined in this study spans the following eight items: 

maintenance policy (option 1 to 4); simulation runtime (number of days); yearly 

flight plan (average number of yearly flight hours for each aircraft); maintenance 

capacity (number of aircraft docks); failure repair times; MTBF; and inspection 

turnaround times for major usage-based and calendar-based inspections. Other 

stochastic features are used, which are directly implemented into the model. All 

other parameterizations of the model are held invariant. In total, the model input 

spans seven input factors, five additional parameters with their distributions (if 

applicable), and fleet status information at t0. Important model inputs are 

described briefly in the following sections.     

3. Fleet Status at t0 

To determine fleet status at t0 (1 April 2015), the aircraft tail numbers with 

their corresponding cell times, which is the number of flight hours accumulated 

until that point in time, flight hours and time until next inspection, its operational 

state, and age were collated in a CSV-file. While cell times, operational status, 

and residual maintenance turnaround times were given metrics, all other 

variables had to be derived from the data. The following parameters define 

values for each aircraft upon initial entry into the study:  

 Tail (ID) number 

 Delivery Date: maximum of zero and the number of days from t0 to 
the delivery of the aircraft  

 Age: difference between t0 and CoC date in number of days; 

 Cell time: number of accumulated flight hours (total hours flown)  

 Flight hours until next flight-hour based inspection:  
difference between cell time and the closest value, which has a 
common divisor of flight hours defined by the inspection system in 
flight hours; 
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 Calendar days until next calendar-based inspection:
difference between date of last inspection according to inspection
system;

 Residual repair and overhaul times: number of days left until
measure concludes; and

 Parameters for failure generation: shape and scale parameters for
Weibull distributions, as described in Section F.7 of this chapter.

4. Fleet Size

Fleet size is initially determined by the number of aircraft in the fleet at t0, 

which is the number of rows in the corresponding input CSV-file. The variable is 

updated each day in the simulation since aircraft join the fleet upon their delivery 

dates. 

5. Yearly Flight Plan

The yearly flight plan defines target values for fleet utilization broken down 

to the individual aircraft. It contains the number of flight hours planned for each 

aircraft per year.    

6. Maintenance Capacity and Inspection Turnaround Times

Turnaround times for major inspections and maintenance capacity are 

strictly determined by input factors given by the design matrix. However, 

turnaround times of minor inspections and non-recurring special inspections are 

determined through bootstrapping from the actual data, which is directly coded 

into a list. The bootstrap technique executes random draws from the list of 

turnaround times and assigns the variable that maps the corresponding property 

of the aircraft object that is due for maintenance with it. This approach provides 

two advantages to the analyst: (1) accurate validation results (see the Quantile-

Quantile plot (QQ-plot) presented by Figure 7 and (2) easy adaptation of the 

model to another aircraft type. The downside of bootstrapping is that, in small 

samples, the tails of the distribution may be underrepresented.  
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QQ-plot shows a very accurate mapping of real data through simulation in the 
interval [0,120] days and deviation in upper segment [121,>300]. The deviation is 
due to sparsity of the data with respect to larger repair times. 

Figure 7.  QQ-plot of Bootstrapped Simulated Repair Times versus Real 
Data with Unprocessed Failure Repair Times of 2015 and 

2016 

Besides inspection thresholds—the number of accumulated flight hours or 

time at which an inspection becomes due (i.e., mandatory)—only lists of repair 

times used in bootstrapping need to be updated.  

7. Aircraft Failure Generation  

Occasionally an aircraft has a malfunction of some subsystem or 

component due to various reasons such as failure of an electronic component or 

fatigue crack of a mechanical structure. These events are defined as failures. 

Although failures always have to be repaired in the long run, there are different 

types of failure. Failures that do not need immediate attention are defined as 

minor failures, while failures that force an aircraft to be grounded for repair 

immediately upon detection are defined as severe failures. In practice, repair of 
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minor failures is allowed to be postponed to the next inspection or to a period 

where the aircraft is undergoing some maintenance tasks (e.g., inspections, TCI 

replacements, or severe failure repairs). Therefore, the event is noted in the 

aircraft maintenance log file and the aircraft status, but in fact the aircraft is still 

serviceable for flight missions. The downside of this method is often a delay in 

inspection turnaround time, especially if the spare parts or the specialists needed 

are not available. For purpose of this work, these failures are defined as type 2 

failures, which will not affect inspection duration because the equipment level is 

not implemented yet. All other failures are type 1 failures, which need immediate 

attention and cause downtime of the affected aircraft. All failures generated by 

the simulation model are in fact type 1 failures, therefore causing downtime and 

reducing fleet availability. To make sure used failure data covers type 1 failures 

properly, repair times are carefully broken down to the actual time needed for 

repair in practice. Time intervals indicating postponement, in which aircraft 

actually remain serviceable, are kept out of the data. Although two 

methodologies were tested during this study, only one will be used for deriving 

the final results.  

a. Calendar-Based Failure Scheduling

In the first approach, data provided by the TIGER management 

department was used to count monthly failure packages over the interval January 

2014 to December 2016. All failures at a certain cell time were viewed as a 

failure package entity. Therefore, at any given cell time, there could only be one 

failure package. After preparing the data, 95% confidence intervals were 

computed for accumulated failure packages per month for each aircraft. The 

corresponding confidence bounds, normalized to the simulation workday 

calendar, were then used as ranges for 53 of the 58 factors in the NOB 

spreadsheet for building the input design matrix used in the preliminary 

simulation experiments. In the simulation, these noise factor inputs are used to 

feed into an exponential distribution, which stochastically determines the time to 

next failure on the workday-based simulation calendar. Each time a failure is 
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generated, the computed time until next failure is added to the current model time 

and used for scheduling the next failure event connected with the corresponding 

aircraft. 

b. Usage-Based Failure Scheduling 

According to Nelson (1982), Meeker and Escobar (1998), and Kalbfleisch 

and Prentice (2002), a common way to model reliability in the engineering 

community is to apply a proper parameterized Weibull distribution to generate 

mean times between failure (MTBF). In addition to MTBF derivation, the Weibull 

distribution is used for many applications in engineering like material strength 

modeling due to its variety of shapes. This makes it extremely flexible in fitting 

data and suitable for different modeling purposes. To fit suitable Weibull 

parameters to given aircraft failure data, a maximum likelihood estimation 

technique was used by utilizing the survreg function of the survival package in R 

(see Kalbfleisch and Prentice (2002), Chapter 2.2 for further information). The 

given aircraft failure data of 2014 to 2016 contained over 3,000 failures in total 

and roughly between 25 to 200 unique failures for each individual aircraft. The 

mean frequency of failure per aircraft is µfail-AC = 85 and its standard deviation 

σfail-AC = 46. To achieve proper Weibull parameters for aircraft reliability, the 

following steps were executed: 

1. All aircraft with fewer than 10 data points were removed from the 
data. For these aircraft, an averaged value of an age-dependent 
selected subset was used to derive the parameters.   

2. Times between failure (TBF) were computed by taking the 
difference between the cell times of failure i+1 and failure i. To 
avoid censoring, the first and last observations were not used.  

3. All failures with the same cell time, which are failures that 
happened or were revealed at the same time, resulting in a TBF of 
zero, have also been removed from the data. 

4. For indexing purposes, a vector containing all the unique tail 
numbers was created. 
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5. While looping over the tail numbers, a parametric survival 
regression model is fitted to the data of each aircraft by using the 
survreg function in R.  

6. In a final step, shape and scale parameters are derived from the 
regression model called sl1 by using equation 1 and 2 below. 
 

𝛼𝑡𝑎𝑖𝑙  =  
1

𝑠𝑙1$𝑠𝑐𝑎𝑙𝑒
         (1) 

 𝛽𝑡𝑎𝑖𝑙 =  𝑒𝑠𝑙1$𝑐𝑜𝑒𝑓[1]        (2) 

7. The generated Weibull parameters were then added to the CSV-file 
containing all t0 input data for automated input streaming. 

Although both methodologies showed plausible results in model validation, 

the calendar-based model excludes the assumption that an increase in usage 

affects aircraft reliability. Usage-induced wear and tear effects, which in practice 

lead to degrading reliability, would be kept out of the scope of the model. As a 

result, changes in fleet utilization (yearly flight plan) would not affect aircraft 

reliability and hence would not affect fleet availability in the simulation results. 

Since the outcomes of a simulation model including this method for failure 

generation would not be able to reflect the impact of usage as an input factor on 

fleet availability, the calendar-based failure generation model is considered a 

non-suitable fit for systems behavior of the underlying real fleet. Therefore, the 

usage-based Weibull model for aircraft reliability has been chosen over the 

calendar-based exponential model to fill in that part.  

Two possible layouts for the usage-based methodology including a 

Weibull distribution model were reasonable: use of a common shape parameter 

for the fleet and unique scale parameters for each individual aircraft, and unique 

parameters for each aircraft, because of their individual failure behavior. Figure 8 

shows the actual results for shape parameters across the fleet gained from the 

maximum likelihood estimation procedure in direct comparison. 
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Due to classification of the data, these results have been anonymized with 
respect to tail numbers. µα = 1.29, σα = 0.22 

Figure 8.  α - Parameters for Aircraft Failure Generation Weibull Model 
directly derived from Failure Data, sorted by Aircraft Delivery 

Datum 

As is easily observable from Figure 8, shape (alpha) parameters derived 

from the data are significantly different from aircraft to aircraft. In particular, 

results for younger aircraft tend to differ from the mean with great variability. A 

possible reason could be the young age of the fleet or simply aircraft system 

complexity. Therefore, the decision was made in favor of individual alpha 

parameters in acceptance of an increase in input data volume. 

Table 1 contains the distribution of the difference between the Weibull 

model generated MTBF values across the fleet normalized with respect to the 

oldest aircraft in the fleet, to present the variability in value without revealing the 

true magnitude. On average, aircraft across the fleet have a 66% higher MTBF 

than the reference. The maximum deviation is 205%, while the standard 

deviation indicates a fluctuation of 52%. This enforces the necessity to implement 
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individual aircraft objects instead of a homogenous fleet in order to achieve a 

suitable model fit for the TIGER fleet. 

Table 1.   Difference in MTBF Generated by the Weibull Distribution Fit 
Across the Fleet Normalized to the Mean MTBF of the Oldest 

Aircraft in the Fleet 

1 2 3 4 5 6 7 8 9 10 11 12 

2.05 0.33 0.98 0.48 0.74 0.57 0.63 1.30 2.16 0.94 0.66 0.94 

13 14 15 16 17 18 19 20 21 22 23 24 

1.02 0.56 0.96 0.72 1.23 0.06 0.24 0.90 0.13 0.54 0.19 0.14 

25 26 27 28 29 30 31 32 33 34   

0.47 -0.05 0.85 0.97 0.28 0.30 -0.11 0.72 0.60 0.00   

Note: mean difference µFleet = 0.66, standard deviation of difference σFleet = 0.52. 

 

Once the maximum likelihood estimation procedure of the Weibull 

parameter derivation for aircraft TBF distributions was done, results were tested 

for goodness of fit. A Kolmogorov-Smirnov-Test applied using the ks.test function 

in R by Marsaglia, Tsang, and Wang (2003) was performed on both the given 

data sample and the values generated by the corresponding Weibull model fit. 

Applying this method, a two-sample hypothesis test was performed, testing 

whether both samples come from the same continuous distribution. The resulting 

p-value of the hypothesis test is 0.8655, which indicates very strong empirical 

evidence in favor of the Null Hypothesis. Therefore, there is no basis to believe 

these two samples come from different continuous distributions. A visual 

representation of the Weibull model-fit for the same aircraft can be observed in 

Figure 9, where the plot shows the survival function (probability of survival) along 

with Weibull random numbers generated with the corresponding parameters 

achieved through maximum likelihood estimation (part (a)) and a QQ-plot, which 
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covers a direct comparison of real TBF data quantiles with the Weibull generated 

quantiles (part(b)).  

Plots shown are produced from data of an anonymized randomly chosen aircraft 
of the fleet in anonymized presentation and the Weibull values generated with 
the corresponding parameters. 

Figure 9.  (a) Survival Function (1-CDF) with 90% Confidence Interval 
based on generated Data Gained from Weibull Fit (left), 

(b) QQ-plot of Real Failure Data versus Weibull Generated 
Values (right) 

To enforce validity of the estimated parameters and be efficient with it, one 

aircraft was picked randomly to show the methodology considered to exemplify 

that for the whole fleet. Since the generated data (red) models the mean of the 

real data (black) very closely, these results are assumed to represent a good 

model fit for aircraft reliability. 

8. Failure Repair and Selected Inspection Turnaround Times

Failure repair times are modeled in the same way as the minor inspection 

and special inspection turnaround times. By using bootstrapping from embedded 

real data, the number of days for the downtime interval is drawn each time a 

failure occurs. The same data set will be used for bootstrapping failure repair 

times in all simulation runs performed. Although different failure repair time sets 
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could be used to model failure repair time in more detail, or a slight modification 

of the code would allow the data set to be varied during an experiment, those 

possibilities are not included in this study. 

9. Side Products

As side product from data analysis, the probability of survival with respect 

to time P[T ≥ t], which is the probability that an aircraft survives at least t hours 

before failure, can be evaluated and visualized by plotting the survival function. 

These results can be differentiated in terms of expected downtime for each 

aircraft by using the survfit function on the corresponding subset of the failure 

data in R. A second side product is determination and visualization of flight hour-

based aging of aircraft by using a simple linear regression model on the given 

cell time data. 

G. SIMULATION INPUT 

1. General Overview

The simulation model requires a fair amount of input data. This input can 

be separated into two classes: (1) variable input that can be changed to study a 

subset of important input factors, different aircraft types, or a subset of the fleet 

and (2) unaltered input lists or parameter distributions that strongly depend on 

fleet data and do not change frequently over time like the set of historical failure 

repair and inspection turnaround times. They are implemented directly into the 

code and utilized by bootstrapping on the go. Furthermore, the fleet model is 

designed to take variable input by command-line arguments and an input stream 

based on CSV-files.    

The simulation model can be run in two different ways. For presentation of 

time series plots, time series outcome data is needed for response variables of 

interest at certain fixed design points of the response surface. For example, to 

generate results for model validation purposes, the simulation model is initialized 
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with the exact input parameters derived from given data of the desired time 

period. Then the simulation is replicated 1,000 times with those settings to get 

statistically meaningful results. The input CSV-file only contains one single input 

row in that case. In contrast, for exploring factor variations, the input design CSV-

file can contain many rows, one for each design point. A smaller number of 

replications can be conducted if the computation time is a concern.     

2. Command-Line Input

Command-line input includes all input factors that are evaluated in this 

study as well as the name of a file that contains the fleet status information at t0. 

Input factor values are determined by the NOB input design matrix and fleet data 

input, both stored in CSV-files. Input for each simulation run corresponds to one 

row in the design CSV-file, which is used by the “rundesign_general” Ruby script. 

This file also contains the file name for the fleet status information and the 

simulation runtime. The CSV-file containing fleet status information at t0 includes 

all aircraft-dependent input data like delivery date, age, operational status, 

residual repair and turnaround times, the Weibull parameters and a few more. 

These files can easily be modified to study the fleet from a different starting point, 

a subset of the fleet, different fleet sizes, or even a fleet with a different aircraft 

type, vehicle fleet or machinery inventory.  

3. Embedded Model Parameters

The model has several parameters that are currently hard-coded, such as 

turnaround times of minor inspections, special inspections, and failure repair 

times. While using bootstrapping on the basis of given assumptions explained 

earlier, these data sets are directly taken from the given fleet data and coded into 

the model as lists from which to pull values. Although slight modifications of the 

code would allow different data sets to be selected and tested via the use of an 

artificial input factor, they are assumed to remain unchanged for the desired time 

frame for this study. These data sets stored in lists will have to be updated, if one 
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wants the model to be adaptable to changes of fleet characteristics over time and 

still keep credibility of results.     

4. Simulation Analysis Approach

Our goal is to sample the simulation model in a way that facilitates 

metamodeling. A metamodel is a statistical model that characterizes the 

simulation model’s input-output mappings, and can be used both descriptively 

and inferentially. The sampling strategy is based on a designed experiment. 

Details of the simulation modeling considerations are discussed in Chapter III, 

and details of the simulation analysis appear in Chapter IV. 
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III. IMPLEMENTATION OF SIMULATION MODEL 

A. SIMULATION ARCHITECTURE 

Chapter II introduced basic ideas and functionalities on which the 

implemented simulation model is based. In this chapter, the focus is on the actual 

implementation. The first subsection gives a brief introduction to SimpleKit, the 

modeling toolkit used to build the simulation. The second subsection discusses 

the time advance mechanism. Subsections three through six cover the input data 

interface, the data structures used for implementation, the design of the model 

using an event graph, and an overview of the model logic. Each event is 

structured as a unique method. Subsequent sections describe each method’s 

logic. Finally, this chapter concludes with the output design. 

1. SimpleKit 

As discussed in Chapter II, a DES model seems appropriate for this study. 

SimpleKit by Oliver and Sanchez (2015) is an object-oriented discrete-event 

modeling toolkit based on event graphs introduced by Schruben (1983) and then 

extended by Sargent (1988) and Som and Sargent (1989). Simplekit is 

implemented in the Python programming language. It provides event scheduling 

and management but leaves random variate generation to Python’s standard 

libraries. User-defined models are implemented as subclasses of the SimpleKit 

class. 

a. Functionality 

SimpleKit manages the ordering and execution of events. An event is 

defined as a point in time at which the system state changes in some fashion. 

Events have no duration, and are implemented in a SimpleKit model as methods 

that perform state transitions or conditionally schedule further events. The 

modeler is required to supply an ‘init’ event which initializes the system state and 

schedules one or more model-specific events in order to initiate a run. The model 
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terminates when no further events are scheduled, or when an explicitly defined 

end-state is recognized and the “halt” method is invoked. 

b. Aircraft Fleet (Subclass of SimpleKit) 

The fleet model object is a subclass of class SimpleKit. It inherits all the 

properties and methods of that parent class. Thus, all scheduling tools are built-

in. Model-specific data—in this case fleet data—is initialized for the model via its 

constructor. Design architecture, implementation, initialization, and event flow of 

the aircraft fleet model are described in detail in Chapter III. 

2. Time Advance Mechanism 

The model was implemented using a time-step formulation with daily 

intervals. Each workday is executed without exception and evaluated separately, 

even if nothing happens. Jumps along the time line due to events are not 

allowed. Flight operations, inspections, failures, and special events are tallied 

daily. For each scheduled workday, a standard workflow is implemented which 

determines whether events influencing fleet dynamics do or do not occur. Since 

aircraft operations and maintenance workflow in practice, especially in 

peacetime, are strongly driven by common work schedules on a daily basis, this 

methodology is assumed to be suitable for this problem. In practice, measures of 

effectiveness like availability rate are also monitored on a daily basis, which 

demands a similar evaluation through the model to ensure a suitable fit of the 

actual model response for the underlying system. 

To keep the time roster consistent, time intervals for maintenance tasking 

in general are normalized to complete workdays. Once a failure happens or an 

aircraft is due for maintenance, its status will be updated immediately to ensure 

flight safety, but execution of workflow starts no earlier than the next workday. 

This approach deviates from practice, but simplifies the model while still 

providing enough fidelity to suit our needs. This model is formulated as a 

terminating simulation—the run-length is a deterministic criterion provided as a 

model input that defines the point in time at which SimpleKit halts the simulation.         
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3. Input Data 

Input data is acquired by two mechanisms. First, information about the 

fleet status at t0 is stored in a CSV-file. Second, command-line arguments are 

provided with the invocation of the Python script—the file name of the input CSV-

file, followed by values for the following six factors: (1) maintenance policy, (2) 

simulation runtime, (3) planned yearly flight hours per aircraft (fleet utilization), (4) 

maintenance capacity, and the inspection turnaround times for (5) flight-hour-

based and (6) calendar-based inspections. Once properly called, the program 

reads and parses the CSV input file line by line. This CSV-file contains all the 

aircraft, one per line of input, including aircraft with delivery dates after the 

initiation date t0. Using this approach, the number of aircraft is not limited due to 

the generic model design used, but is determined by the size of the CSV-file. The 

position of each piece of information is standardized. The model checks the 

delivery date of each aircraft on initialization, schedules the deliveries for aircraft 

with a positive (future) delivery date value, and starts the simulation with the 

subset of aircraft for which the delivery date is equal to zero. After all input 

information is processed, the fleet model is then started with all necessary input 

parameters.     

4. Data Structures 

Other than the aircraft object template design for the individual aircraft, all 

variables are organized with basic Python data-types. This section focuses on 

the details of three basic objects used for fleet management: (1) the Aircraft 

object itself, (2) the Aircraft Fleet, and (3) the Aircraft Assignment list. A side note 

regarding distributions implemented using the bootstrap method concludes this 

section. 

(1) Aircraft Object  

Each aircraft is created as an instance of class “aircraft,” a customized 

Python object. The constructor initializes each aircraft using all the properties 
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read from the CSV-file along with some auxiliary variables used for flight 

assignment prioritization and failure generation (Figure 10).  

Figure 10.  TIGER Aircraft Object 

Later, it can easily be expanded with equipment objects for key equipment 

like engines or main gear boxes along with their properties and maintenance 

policies. The aircraft class is not TIGER specific—it can be used for other aircraft 

types. 

(2) Fleet Object 

The fleet is a globally available collection of aircraft objects organized in a 

Python dictionary. A dictionary stores and retrieves objects by associating them 

with a “key” value. In the fleet model, the aircraft IDs or tail numbers associated 

with aircraft objects are used as the unique keys to access aircraft for flight 

assignment or any kind of maintenance event processing. Aircraft entities can be 

removed or added any time. 

(3) Assignment List 

The assignment list is a global Python list object. Each day, the fleet is 

checked for serviceable aircraft. Before generating decisions for flight 

assignment, a copy of serviceable aircraft will be stored in the assignment list. A 
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list object is sortable by any kind of variable, which is very useful for aircraft flight 

assignment. Also, aircraft objects can be removed from either the lower or the 

upper end of the list at any time. Once the operate method is called, aircraft IDs 

are chosen from the assignment list, but any updates to the associated aircraft 

data are stored in the fleet dictionary.  

Lists are used throughout the program for other purposes. Most input and 

output variables, such as the real failure repair times, are stored in lists. The 

bootstrap method uses a list of historical repair times from which it randomly 

samples each time a failure is generated. 

5. Event Graph

This methodology for describing event flow was first introduced by 

Schruben (1983) and then extended by Sargent (1988) and Som and Sargent 

(1989). According to Buss (1996), event graphs are “a way of graphically 

representing discrete-event simulation models” (p. 153, abstract). Furthermore, 

he states that “the Event Graph is the only graphical paradigm that directly 

describes the event flow of a discrete-event simulation model. Event graphs have 

a minimalist design, with a single type of node and two types of edges with up to 

three options. Despite this simplicity, Event Graphs are extremely powerful” (p. 

153, abstract). Each event is represented by a unique node. Directed edges, 

a.k.a. arcs, depict scheduling relationships between events. Edges are annotated 

with a delay (which can be zero, but never negative), and scheduling can be 

state-dependent. The basic events and scheduling connections of this aircraft 

fleet simulation model are presented in Figure 11. 
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This discrete-event graph shows states and state flow of the TIGER fleet model. 
Aircraft delivery and basic functionalities are highlighted in green, scheduled 
maintenance in blue, and unscheduled events demanding maintenance actions 
in red. Arcs always executed without condition are marked with the character “1” 
and arcs executed based on conditions with “&.” 

Figure 11.  Event Graph for the Implemented Usage-based Discrete 
Event Simulation Model 

6. Model Logic

Each event node shown in Figure 11 is implemented as a unique Python 

method. The event logic for each is described in detail in the next section.  

The model is invoked by calling SimpleKit’s run method for the fleet model 

instance. Run kick-starts the model by invoking the mandatory init method. It 

initiates the fleet by instantiating all aircraft objects from the corresponding input 

data and scheduling aircraft deliveries according to the specified CoC-date 

values. Aircraft with delivery dates of zero are available immediately. The init 

method then schedules the first workday without any delay. From this point, 

event logic schedules a subset of events in recurring but not necessarily identical 

order. Subsequent event scheduling is handled by SimpleKit’s pending event list, 
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which is populated by schedule operations corresponding to the edges of the 

event graph. 

After closure of a preceding workday, which always happens after 

derivation and storage of the current fleet status in the status board, a new 

workday is scheduled until the defined halt criteria are met and the simulation run 

terminates. Each day, aircraft demand will be satisfied by flight operation 

assignments until there are no more serviceable aircraft left in the fleet due to 

failures, special inspection events, or scheduled maintenance. While failure 

events and special inspection events occur stochastically according to Weibull 

and Bernoulli models, respectively, scheduled maintenance is performed 

according to the deterministic requirements of the inspection system under 

evaluation. Policy changes are allowed over time during a single simulation run, 

but on any unique workday there can only be one maintenance policy active at a 

time. Hence, its selection is optional in the event graph. This selection is either 

done by input parameter or by a “hard-coded” model time value utilizing the 

option-switch variable. Also, each aircraft entity can only have one unique status 

at any given time. It is either serviceable (clear), in scheduled maintenance 

(major or minor usage-based or calendar-inspection), special-inspection 

(specInsp), in failure state (failure), or waiting for maintenance (waiting). Due to 

usage-based failure generation and the type-1-failure-only assumption described 

in Chapter II, the failure state can only be reached from the operate event before 

or during a flight operation. After a failure occurs and the obligatory failure repair 

procedure has been scheduled, Python resumes execution of the operate event 

where it left off, and further flight assignments will be conducted until there is 

either no demand or no aircraft left to meet the demand. After completion of 

operate, the program flow deterministically returns to the clock event, which then 

proceeds with execution of the maintenance policy and status board output 

generation. This task flow is repeated for each workday until the program 

terminates.  
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B. MODEL INITIALIZATION 

1. Init Event

The init method handles all input data provided by the model run 

invocation. It instantiates and initializes variables such as aircraft objects, the 

fleet dictionary, and failure repair times, as well as auxiliary variables for output 

design and testing purposes. All variables needed by the simulation are defined 

as instance variables of the fleet model class, which makes them accessible 

throughout the scope of the model and the duration of the run. If future model 

revisions are necessary, the user should use the init method to change 

simulation parameters or fleet condition, or to insert new or updated data as the 

aircraft fleet is evolving over time. Finally, the first workday gets invoked by 

scheduling the first clock event.  

2. Instantiating Aircraft Entities and Fleet Object

While processing each aircraft given by the fleet input CSV-file, an aircraft 

delivery event gets scheduled if applicable, and failure and scheduled 

maintenance data are used to set the aircraft’s current state and update available 

maintenance capacity, which includes scheduling of a failureRepair event in case 

an aircraft failure occurs at or occurred prior to t0. The delay is determined with 

respect to the residual repair time given by input data from the CSV file.  

After finalizing the instantiation process, each aircraft will be stored in the 

global fleet-dictionary with its tail number or ID used as a unique key for 

accessing the objects. The properties of Python dictionaries provide nearly 

instantaneous access to the aircraft data. Also, fleet size is not limited with 

respect to specific data type constraints. It is only bounded by given memory size 

of the computer system on which the model is executed. The code structure for 

aircraft and fleet instantiation is triggered by the length of the delivery date list 

handed over with the data at time of model startup. Since every aircraft has a 

delivery date, which is either zero or greater than zero, the fleet instantiation is 

not bounded by a specific fleet size. This generic design adapts automatically to 
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any given fleet size, determined by the number of properly filled lines in the fleet 

data input CSV-file.     

3. Aircraft Delivery

All aircraft delivery events are scheduled during fleet initializing by the init 

method prior to the first workday. Although aircraft objects subject to delivery are 

already initialized and part of the fleet, their main status remains not serviceable 

(False) until the scheduled individual delivery event is executed. Also, failure 

scheduling is omitted and the maintenance calendar remains in freeze mode until 

the actual delivery date arrives. On the delivery workday, the main status of the 

affected aircraft is set to serviceable (True), all other properties are updated, and 

the first failure is scheduled. Finally, fleet size is updated.  

C. TIME MANAGEMENT 

1. Clock Event

The Clock method determines the daily event processing. The order of 

daily event processing is the same for each day (Figure 12). After aircraft and 

flight hour demand are generated, the fleet is scanned for serviceable aircraft. 

Each serviceable aircraft is added to the list used for flight assignments.  

Figure 12.  Partial Event Graph Showing Daily Event Flow of Major 
Events 
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While looking for serviceable aircraft, fleet data gets updated once each 

workday. Fleet data updates include: (1) increase age for all aircraft, (2) 

decrease workdays until next inspection, but only for aircraft not currently 

undergoing major scheduled maintenance, and (3) decrease residual inspection 

turnaround time for aircraft currently in inspection. These rules mean that aircraft 

are always aging, but the scheduled maintenance calendar is frozen for aircraft 

currently in major overhaul. 

After iterating through the fleet, the assignment list gets sorted with 

respect to the utilization budget of aircraft to prepare the fleet for the subsequent 

assignment process. Finally, the major event methods highlighted in green in the 

partial event graph shown in Figure 12, as well as the maintenance policy 

highlighted in blue, are invoked once each day in the following order: Operate, 

ProceedSchedMaint, and StatusBoardOut. The maintenance policy to be used is 

determined by the policy optionSwitch variable, determined either by an input 

parameter or “hard coding.” StatusBoardOut concludes by scheduling a clock 

event for the next workday, and the process starts again.  

2. Daily Demand Generation

Generation of daily aircraft demand follows some simple mathematical 

rules. The yearly flight program for the fleet (YFPi) is defined each year prior to 

year i as the sum of the average monthly flight programs, defined as utilization 

rate ui for each aircraft, multiplied by the number of aircraft in the fleet nAC and 

the corresponding monthly seasonal weight wj for each month j. This seasonal 

factor describes the proportion of the yearly flight program to be flown in month j, 

and provides an opportunity for the user to add a seasonal effect to the model 

such as change in demand of flight hours throughout the seasons in a specific 

year i. The yearly and monthly flight programs are given by Equations 3 and 4: 

𝑌𝐹𝑃𝑖 = ∑ (𝑛𝐴𝐶 ∗ 𝑢𝑖) ∗ 𝑤𝑗 = ∑ 𝑀𝐹𝑃𝑖𝑗
12
𝑗=1

12
𝑗=1 , for each year i       (3) 
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𝑀𝐹𝑃𝑖𝑗 =  𝑛𝐴𝐶 ∗ 𝑢𝑖 ∗ 𝑤𝑗  (4) 

for i ε [1,6), j ε [1,12] and wj ε [0,1]. 

Because there is no significant evidence of seasonal effects in the fleet 

data, the monthly weights wj are held constant in current model runs. The 

average number of monthly missions is derived by dividing MFPij by the mean 

flight hours per mission µFH/Miss derived from given fleet utilization data. 

Normalized by 22 workdays each month results in the average number of 

missions per workday. This represents the mean daily aircraft demand and is 

given by Equation 5:   

µ𝐴𝐶 =
𝑀𝐹𝑃𝑖𝑗

µ𝑭𝑯/𝑴𝒊𝒔𝒔∗22 
      (5) 

Since daily demand is assumed to be stochastic, a truncated normal distribution 

is utilized with µAC and σAC = 0.5 to model non-negative demand generation. The 

final derivation of daily aircraft demand is presented in equation 6: 

𝐷𝐴𝐶 = round(max(𝑛𝑢𝑚𝑝𝑦. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(µ𝐴𝐶 , 0.5), 0))  (6) 

Derivation of daily flight hour demand is much simpler. By using µFH/Miss and σFH, 

𝐷𝐹𝐻 = max (𝑛𝑢𝑚𝑝𝑦. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙 (µ 𝐹𝐻

𝑀𝑖𝑠𝑠

, 𝜎𝐹𝐻) , 0)      (7) 

During the validation process, using this methodology produced flight 

hours that are statistically indistinguishable from those actually flown in practice 

throughout the years 2015 and 2016. Hence, the approach was deemed 

acceptable. 

3. Basic Modeling Features

Since the Clock event is responsible for scheduling daily basic tasks, it is 

the first event to be executed each day. The user can use it to schedule 

adjustments to the model at particular points in time, like prior to the beginning of 
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a new calendar year. Since fleet behavior is subject to change over time, this 

may yield a more accurate fit of the simulation relative to the underlying fleet 

system, or simply offer capabilities for sensitivity analysis in a what-if scenario.  

Driving factors for fleet behavior might change as the fleet matures. 

Failure repair time distribution, for example, might change due to learning curve 

effects impacting maintenance personnel effectiveness. The user can change 

parameter distributions any time by updating the corresponding list yielding the 

desired distribution in the init method. It is also possible to define an upper bound 

for yearly flight hour demand or select different sets or subsets for bootstrapping 

from given fleet data like failure repair times. 

D. AIRCRAFT ASSIGNMENT 

1. Daily Flight Operations (Operate Event)

As described above, demand for aircraft and flight hours is generated by 

the Clock method each day. After the daily update of the aircraft objects is done, 

the assignment list is filled with serviceable aircraft, and aircraft are sorted by 

their utilization budget, the Operate method gets scheduled with zero delay and 

the aircraft assignment algorithm is executed as long as there is residual demand 

of aircraft and serviceable aircraft left to be assigned to flight missions. Although 

the assignment list should only be filled with serviceable aircraft by now, a lot of 

things can happen during daily flight operations. Aircraft could be subject to 

failure or become unavailable due to any kind of scheduled maintenance, 

because they are running out of flight hours, or because a special event occurs. 

To avoid basic rule violations, the assignment algorithm is designed to maintain 

the central rule hierarchy, including flight safety guidelines. It assures that aircraft 

subject to any kind of flight safety issue are removed from the assignment list 

and properly handled based on their situation, such that they cannot be assigned 

again until the flight safety issue has been resolved. The basic logic of the 

assignment algorithm is presented in Figure 13. 
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Figure 13.  Aircraft Assignment Algorithm, Implemented in the Operate 
Method 

Besides monitoring implemented flight safety regulations, the assignment 

algorithm has six major tasks: 

1. Keep track of mission non-completion, which is the accumulated 
number of flight hours not flown due to aircraft failure and non-
availability of aircraft. 

2. Assure an equal load across the fleet by selecting the aircraft with 
the highest residual monthly utilization budget for flight missions 
unless dock space becomes available. Among other properties, the 
utilization budget is decreased and the assignment list is sorted 
with respect to utilization budget after each flight. Therefore, flight-
by-flight other choices for aircraft assignment are forced, which 
assures the utilization load is dispersed equally across the fleet. 

3. Improve utilization of maintenance docks by basing the selection on 
fewest flight hours until next inspection. This assures that the 
aircraft closest to its next scheduled maintenance becomes due 
earlier, to decrease dock idle times. In practice, this monitoring 
process is done by daily meetings. Updates are made based on 
estimation and experience. There are ways to implement this 
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process more realistically in the model, but that is an area for future 
work. 

4. Schedule failure and non-recurring special inspection events as 
appropriate and remove affected aircraft from assignment list. 

5. Ensure that individual aircraft cannot be flown more than four times 
per day. This feature provides assurance that no infeasible state 
occurs in cases of very high demand.   

6. Perform assignment list management and update aircraft properties 
after each flight as needed. 

Failure and special inspection events are conditionally scheduled in 

connection with each flight assignment based on random breakdown events or 

scheduled inspection times, the corresponding Failure and SpecialEvent 

methods are invoked directly. Once the sum of accumulated flight hours since 

last failure and the current demand exceeds the current MTBFnext value, the 

condition for a failure event is satisfied. The corresponding aircraft is removed 

from the assignment list and the Failure event method is executed. If this failure 

condition is not satisfied, a uniformly distributed random number between zero 

and one is generated prior to each flight, which is used to verify whether the 

special inspection threshold is undercut or exceeded. In case the threshold is 

undercut, a special inspection event occurs and the aircraft is removed from the 

assignment list. After completion of the method belonging to its corresponding 

event, Python resumes operations at the point of the method call. When there is 

no residual demand left or there are no more serviceable aircraft left in the 

assignment list, the Clock method resumes operation in the Operate method and 

invokes the ProceedSchedMaint method corresponding to the current 

maintenance policy.  

E. FAILURE HANDLING 

1. Update Aircraft Properties  

Once the failure condition is satisfied, the impacted aircraft is removed 

from the assignment list and the Failure method is invoked directly with the 
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corresponding aircraft ID. The Failure method only does two things: (1) updating 

the status and the corresponding properties of the aircraft object in the fleet 

dictionary and (2) scheduling its failure repair event. Since there are no 

constraints on line maintenance capacity, failure repair always starts immediately 

on the next workday using a bootstrapped failure repair duration. Hence, the 

residual repair time for a specific failure is reduced by one day every day until it 

reaches zero. It should be noted once more that although an aircraft cannot 

accumulate flight hours while in a failure state, the maintenance scheduling 

calendar is still active. While in repair, the time until next inspection is 

decremented every day.  

2. Determine Failure Repair Time  

Determination of failure repair times, which represent the delay for the 

failure repair event to happen, is done by bootstrapping from the list of real failure 

repair-time data. The resulting value is stored for testing purposes and used to 

schedule the failure repair event. This approach ensures plausible failure repair 

times, and can easily be replaced by a parametric distribution if one is deemed 

suitable. 

3. FailureRepair Event 

The FailureRepair method has a fairly simple task. This method updates 

the aircraft properties after repair actions are concluded. The overall status of the 

corresponding aircraft is reset to clear and its failure status is set to False with 

zero residual repair time left. Finally, its flight hours since last failure value is also 

set to zero and the next MTBF value for the next failure event is computed using 

the methodology described earlier. 

F. INSPECTION HANDLING 

1. Overview 

The final task on each scheduled workday is the ProceedSchedMaint 

method, which applies the current maintenance policy. There are four variants of 
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this method, which cover the four maintenance policy options evaluated in this 

study. These methods browse the fleet for scheduled maintenance conditions 

and manage scheduled maintenance for both general and special inspections. 

This includes initialization and closure of maintenance events, and a reset of 

aircraft status and management variables. 

2. Minor Scheduled Maintenance Events

Minor scheduled maintenance events are usage-based inspections, which 

require a relatively small amount of work at the end of each interval. They are 

performed by the line maintenance company and are not currently subject to 

constraints in the model. To keep track of due dates, a designated variable yields 

the flight hours until next inspection, which is updated after each flight. 

ProceedSchedMaint initializes a minor scheduled maintenance event by updating 

the designated aircraft properties directly instead of scheduling it via SimpleKit 

methods. Residual turnaround time is updated by Clock each day. Once residual 

inspection turnaround time reaches zero, ProceedSchedMaint resets the aircraft 

status and flight hours until next minor inspection. During a minor usage-based 

inspection the major inspection calendar remains active. Therefore, turnaround 

times—which are also evaluated by bootstrapping from the given real data—

affect residual workdays until the next major inspection. 

3. Major Scheduled Maintenance Events

For TIGER major scheduled maintenance, there exist two basic types of 

major scheduled maintenance events: a flight hour-based and a calendar-based 

inspection. These inspections are considered major because they require a large 

amount of work with a high degree of aircraft disassembly. These inspections 

require an aircraft dock, specialized personnel, and a large amount of time. The 

aircraft management procedure implemented in the model is the same as for 

minor maintenance events. Each aircraft object possesses variables that track 

the inspection status and the residual turnaround time, which are updated each 

day. The only difference is that maintenance capacity is constrained. An aircraft 
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only enters inspection if there is dock space available. If capacity is available and 

current demand for flight hours is larger than flight hours until next inspection, a 

usage-based major inspection is initiated for the affected aircraft. If workdays 

until next inspection reach zero before the flight hour criterion is violated, a 

calendar-based major inspection is initiated. If there is no dock space available, 

the aircraft due for maintenance is marked as waiting for maintenance through an 

update performed by ProceedSchedMaint.  

Every major usage-based inspection also includes all required 

maintenance tasks of a major calendar-based inspection, but major calendar-

based inspections do not include maintenance tasks of the major usage-based 

inspections. Hence, the set of maintenance tasks performed includes all required 

actions for justification of resetting the workday until next inspection condition. 

During a major inspection, the inspection calendar clock is frozen, and gets 

renewed after each major inspection.  

4. Non-recurring Special Inspection Events

Although non-recurring special inspection events belong to the line 

maintenance domain and therefore are handled the same way and under the 

same conditions as minor scheduled maintenance events, they are scheduled via 

SimpleKit. Update of aircraft properties is done by an event method called 

SpecialInspection. Statements regarding inspection calendar and turnaround 

time generation likewise apply. Therefore, the inspection calendar is still active 

during the conduct of non-recurring special events, and turnaround times are 

determined with bootstrapping. Occurrences of non-recurring special inspection 

events are determined by a Bernoulli trial prior to each flight mission using a fixed 

probability estimated from the historical fleet data.    

G. QUEUE MANAGEMENT 

In practice, aircraft are monitored very closely by the fleet management 

departments of the corresponding units. Utilization budgets are updated 

continuously and aircraft utilization is updated instantaneously if necessary. Also, 
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the limited fleet size has not imposed challenges to fleet management with 

respect to maintenance capacity so far. Therefore, queue management basically 

is done in practice by proactive fleet management to avoid of queueing. The 

underlying queueing technique applied in practice is “first-in-first-out” (FIFO). 

Given the projected fleet growth, this will not be possible in the not-too-distant 

future. Long inspection turnaround times and heavy utilization of the fleet will 

almost certainly lead to overload of maintenance capacity and long waiting times 

for maintenance facilities. Therefore, evaluation of queueing effects due to 

growing fleet size and analysis of maintenance capacity is a subject of interest 

for this study.   

H. OUTPUT SPECIFICATION AND MODEL EXECUTION 

1. Overview

For presentation and analysis of simulation output, two methodologies 

were applied: (1) Time Series and Likert visualization and (2) Multidimensional 

linear regression analysis covering the NOB metamodel results. Time Series 

plots generated for availability rate, inspection queue, and flight hour supply are 

produced with R. Likert plots are used to display deviation from a given daily 

aircraft availability threshold as requested by the sponsor. To generate these 

plots, complete time series sets of daily output data for each factor are required.  

In contrast, for metamodel analysis, only summary statistics like the upper 

and lower decile and median (50th quantile) for the whole simulated period are 

required for each response variable, collated with the mirrored input factor 

settings. For any single simulation run, one line of output is generated and written 

to an output CSV file. For validation of a single-scenario simulation analysis, 

1,000 runs at the same input parameter combination are executed, while for each 

NOB simulation analysis six rotations of 512 design points (parameter 

combinations), replicated 30 times, result in 92,160 lines of output written in a 

CSV-file. The automated execution and output handling is done with the 

rundesign_general Ruby script provided by the NPS SEED Center, with input 
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defined by the implemented fleet data and input design CSV files. The input 

factor values are matched to the outputs for each run, as required to fit 

metamodels that summarize the relationships between the input factors and the 

outputs of interest. To meet the needs of the user, the output can be generated 

either by using the NOB input design or single point analysis for time series data 

and visualization. 

2. Output Generation (StatusBoardOut Method)

Model output is produced by the statusBoardOut method, which is called 

by operate as the last event each day. The status board method browses the 

fleet for aircraft status and flight hours until next usage-based major inspection at 

the end of the day. With this information, the status board method computes the 

current fleet availability ratio, as well as the ratios for each implemented aircraft 

status class. As a second step, the resulting values are stored in two 

corresponding lists which can then be sorted for quantile estimation. Because 

Python list objects are reference variables, sorting a simple copy would alter the 

original time series data so a deep copy is required for quantile estimation. At the 

end of each simulation run, the quantiles, number of special inspection events, 

and non-accomplished flight hours are evaluated. The number of non-recurring 

special events is derived by browsing through the list containing all generated 

Bernoulli trial probabilities for values below the given threshold. Quantiles for 

each response variable are determined by the tenth, fiftieth, and ninetieth 

percentiles of the corresponding sorted list of daily outcome values. In general, 

the output can be customized to meet the needs of the user. The design point 

settings for the factors and all output variables are combined in one large print 

statement, and the result is written into an output CSV-file by the 

rundesign_general Ruby script. Python prints lists as bracketed comma 

separated values. After suitable editing to remove the brackets, they can be read 

into virtually any analysis tool, such as R. 
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3. CSV Content 

The output CSV-files generated contain the following elements. 

(a) For single point simulation analysis: 

 maintenance policy option; 

 simulation runtime; 

 yearly flight hours per aircraft; 

 maintenance capacity; 

 major inspection turnaround times; 

 total number of aircraft failures, flight missions, special events, and 
yearly flight hour demand; and 

 time series output for availability rate, deviation from aircraft 
threshold, flight hour supply, and rates for each aircraft status class. 

(b) For NOB Output: 

 Input factor settings of design points as in (a); 

 lower decile, median, and upper decile for availability rate, deviation 
from aircraft threshold, flight hour supply, aircraft waiting for 
maintenance, and number of idling docks; 

 total number of aircraft failures, flight missions, special events, and 
yearly flight hour demand; and 

 missed flight hour demand due to aircraft failure and non-availability 
of serviceable aircraft. 

I. EXPERIMENTAL SETUP 

The experimental setup required for the model validation time series 

analysis requested by the sponsor is different than that for the NOB metamodel 

analysis. To show that the time step simulation model developed for the 

underlying aircraft fleet produces plausible results, a specific parameter setup 

corresponding to the given fleet data is used. 
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1. Validation Setup 

The validation setup is a special variant of the general time series setup. It 

spans only the time frame from the 1 April 2015 to 31 December 2016. The 

validation simulation runs need to incorporate a switch in maintenance policy that 

occurred on 1 April 2016, making a transition in the special inspection threshold 

level and failure repair times in order to correspond with changes in the real data. 

Bootstrapping is done from two different data sets for 2015 and 2016. All input 

factors are set to values derived from the historical fleet data. This setup is 

treated as a single design point analysis, and replicated 1,000 times.    

2. Time Series Setup  

The time series setup is similar to that for validation, except that all 

standard input variables and factors are held constant throughout each 

simulation experiment. Standard input variables are changed case by case. The 

assumption is made that the parameter values used are valid for the entire 

simulated time period, which includes 2015 and 2016 but projects the fleet status 

four years into the future. This assumption influences the course of the entire 

time series. For example, one can choose a common value for yearly fleet 

utilization level while changing the inspection turnaround times as needed from 

experiment to experiment spanning the same simulation time frame. As a result, 

all results can be presented in one plot. In addition, the failure repair duration 

data set of 2016 yielding the already-improved repair times, as well as the 

implemented minor usage-based and special inspection turnaround times, are 

used for all time-series experiments directly implemented from given fleet data. 

All these internal parameters plus the non-recurring special inspection threshold 

remain unchanged throughout the simulation replications of each experiment. 

Another option for analysis provided is the change of aircraft reliability 

parameters. This is done by feeding the simulation model through a modified 

fleet input CSV-file. 
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3. NOB Experiment Setup 

The experimental design selected is a Nearly Orthogonal and Balanced 

Latin Hypercube (NOB) design by Vieira et al. (2013), which allows a mixture of 

up to 100 continuous, and up to 200 discrete or categorical factors to be studied, 

using 512 design points. The design points are distributed nearly uniformly 

across all dimensions and are nearly orthogonal to each other, meaning the 

factor effects are unconfounded during analysis. 

For this study, one categorical and four continuous factors are varied based on 

the NOB design. Other input data and model parameters remain fixed throughout the 

experiment. Simulation runtimes are all kept constant at 1,584 workdays—six years—

according to the sponsor work agreement. Figure 14 presents the pairwise plots of all 

the factor input combinations, and shows the evenly-distributed space-filling behavior 

produced by the NOB experimental design.   

 

Figure 14.  Pairwise Plot of Main Variable Input Factors Showing Factor 
Space Coverage Achieved with NOB Design Matrix 
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To improve space filling properties, assignments of factors to columns can 

be permuted to produce different combinations of the factor settings. The 

reassignment process is called “rotation,” and the resulting values are 

concatenated to the original design in a process called “stacking.” Each design 

point is further replicated multiple times through the simulation experiment to 

facilitate assessment of the system’s variability. Cioppa and Lucas (2007, p. 54, 

section 7) conclude that an experimental design of this type provides good 

space-filling properties and “allows an analyst to examine many factors by fitting 

a model with main, quadratic and interaction effects with nearly uncorrelated 

estimates of the regression coefficients for the linear effects terms.” These 

capabilities meet the needs for this study. 

Factor settings and ranges used in the design are presented in Table 2. 

Maintenance policy options are specified by a four-level discrete-valued factor in 

the spreadsheet, but treated as a categorical factor during the analysis. The 

design is rotated and stacked 6 times, which results in a total of 6 x 512 = 3,072 

design points. Each design point is replicated 30 times. Hence, the overall 

number of simulated experiments is 92,160.  

Table 2.   Factors and Factor Space Bounds 

 

Name  Factor Description Type Interval or  
{Values} 

Option Maintenance Policy Option    categorical {1,2,3,4} 

YFP.AC Yearly Flight Program continuous [40,200] FH 
 

Docks Number of Docks discrete [4,20]  
 

FH.Insp Usage-Based Inspection  
Turnaround Time 
 

continuous [66,440] days 

Cal.Insp Calendar-Based Inspection 
Turnaround Time 

continuous [30,96] days 
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The four maintenance policy options represent different phase-

maintenance policies combining different combinations of usage-based and 

calendar-based inspection intervals. As described earlier, maintenance policy 

option 1 is obsolete, and policy option 2 is currently in place. Policy option 3 is a 

logical extension, but comes with more uncertainty. Policy option 4 is the most 

ambitious change from the current policy; it may be more difficult to implement, 

and comes with even greater uncertainty. Due to classification, this cannot be 

explained further. The ranges for yearly flight plan and the number of docks 

(maintenance capacity) are determined by the sponsor, and the turnaround time 

ranges are set after considering the available data and plausible changes that 

might occur. Note that turnaround time for usage- and calendar-based 

inspections are fixed values in the model, not parameters of a probability 

distribution. 

4. Conducting the Experiments

Each single simulation run takes about two seconds to execute. 

Therefore, each single point experiment for time series output and validation 

purposes, replicated 1000 times, ended up taking about 20 to 30 minutes to run. 

Actual runtimes are strongly dependent on the volume of output data to be 

written into the CSV file. For NOB input design analysis, 3072 design points were 

replicated 30 times, resulting into a runtime of about 38.5 hours on a standard 

laptop. 
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IV. RESULTS

This chapter summarizes results obtained from the simulation study 

described in Chapters II and III. In addition to the use of a reliable simulation tool 

for fleet management that has been delivered to the German Army for use in 

practice, these results offer important practical insights. The following sections 

describe the results of the model validation process, followed by a presentation 

of results that answer the study questions posed in Chapter I.  

A. MODEL VALIDATION 

1. Overview

Law (2015) defined validation as “the process of determining whether a 

simulation model is an accurate representation of the system described, for the 

particular objectives of the study” (p. 247, Chapter 5). In other words, if actual 

data exist, the simulation output generated on the basis of defined input factor 

changes should be comparable to those same changes having been made in the 

system as used in practice. To achieve validation, input-factor probability 

distributions should accurately reflect actual fleet data in the model. Our 

measures of effectiveness (MOE) defined in Chapter II, Section E were selected 

following conversations with subject-matter experts in the German Army. For the 

model validation process, two techniques are used: (1) comparison of simulation 

output with data from the actual system, and (2) sensitivity analysis, which 

demonstrates response of the model to defined changes in input variables. 

Results for both techniques are presented below. 

2. Comparison with the Existing System

Law (2015) states that “the most definitive test of a simulation model’s 

validity is to establish that its output data closely resembles the output data that 

would be expected from the actual system” (p. 262, para 5.4.5). We use a 

validation period that spans the dates 1 April 2015 to 31 December 2016 in 
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agreement with the sponsor. Actual fleet availability data is provided as time 

series data for each month, which we compare to output from the model 

simulated 1000 times. The corresponding outcome for each simulated workday is 

summarized as a daily mean as well as lower and upper deciles. These deciles 

may be used as an 80% prediction interval about the mean curve. The time-

series data is then averaged on a monthly basis for comparison with the 

delivered real fleet availability data. In agreement with the sponsor, the goal of 

the validation process is to achieve a mean deviation of simulated results from 

the given real fleet availability data (mean absolute error) below 5%. Figure 15 

presents the plot showing the final model validation result for fleet availability 

rate, which achieves an error of 4.3%.  

Real fleet availability data is shown in red and simulated data is shown in blue. 
The shaded area represents the 80% prediction interval. Mean absolute error 
ε = 4.3%. 

Figure 15.  Validation Results for Availability Rate from Period 
April 1, 2015–Dec. 31, 2016 
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Figure 15 also shows that roughly half of the simulated monthly average 

availability values are below the curve and the other half are either on or above 

the real data curve, which supports the argument of a reasonable model fit.  

Figure 16 presents the plot showing the final model validation result for 

flight hour supply. Again, achieved results strongly indicate a suitable response fit 

with respect to the flight hour supply for the implemented model. The mean 

absolute error concludes to 1.3%. 

Real flight hour supply data is shown in red and simulated data is shown in blue. 
The shaded area represents the 80% prediction interval. Mean absolute error 
ε = 1.3%. 

Figure 16.  Validation Results for Flight Hour Supply (Bank Time) from 
Period April 1, 2015–Dec. 31, 2016 

3. Sensitivity Analysis

Although a successful comparison with the existing system supports belief 

in the validity of the model, sensitivity analysis is used to check that the 

simulation model responds as anticipated to changes in inputs. In Figure 17 we 

present the results of a sensitivity analysis involving several factors. The 

perturbed factors are increases and decreases in inspection turnaround time of 
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40%; increasing the special inspection occurrence probability threshold by 50% 

and then setting the probability threshold to zero; and a 100% increase 

(doubling) in average MTBF. Due to classification of achieved analysis results, 

base levels of perturbation factors are not published. Obviously, one expects 

fleet availability to increase with a decrease in non-recurring special inspection 

frequency, and turnaround times such as an increase in MTBF would affect 

availability. A decrease in availability is assumed for the opposite cases, 

respectively. As can be observed in Figure 17 and Figure 18, the model does 

respond exactly as it is supposed to do. Without being more specific, the mean 

error is increasing with the presented factor changes.  

Figure 17.  Sensitivity Analysis for Inspection Turnaround Times and 
P[SpecInsp]) 
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Figure 18.  Sensitivity Analysis for MTBF 

Also, changes in the relative positions of the simulated outcome to the real 

data are arising as anticipated. 

B. TIME SERIES RESULTS 

1. Base Case Analysis 

The simulation input parameter setup representing actual fleet conditions 

constitutes the base case. The base case, defined by maintenance policy 2 

which is the currently applied inspection system, and factor levels gained from 

data analysis, has fleet utilization at 80 flight hours per aircraft per year, and an 

increasing number of total flight hours for the fleet due to an increasing fleet size 

over the years. A six-year period, starting on 1 April 2015, is defined as a 

plausible time span for simulation analysis of fleet dynamics. This includes the 

known fleet condition at t0 (aircraft information including delivery dates, age, 

reliability parameters and inspection information), the validation time period (528 

simulated workdays representing period 1 April 2015 until 31 December 2016), 

the aircraft procurement cycle, and about three additional years to reach the final 

fleet size. Figures 19 and 20 present simulated time series results for availability 

rate and availability gap in the base case scenario.  
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Given single-point time series results for availability rate reflect on base case 
scenario at 80 flight hours per aircraft and year and applied maintenance policy 2 
(inspection system variant 2). Inspection Duration and Maintenance Capacity are 
at mean level derived from given fleet live data.   

 

Figure 19.  Base Case Simulation Results with 80% Prediction Interval for 
Fleet Availability Rate and Readiness Threshold Adapted to 

the Change in Fleet Size 

Longer simulation time frames may be used, but at a loss of realism due 

to unforeseeable circumstances such as changes in fleet management, aircraft 

design, and reliability of components. Figure 19 shows that maximum availability 

is reached at the end of 2016, with a significant downward trend in fleet 

availability over the following years, which is dominating the positive effect of 

fresh aircraft deliveries. But more interestingly, the prediction interval reveals a 

significant probability of falling below the given threshold of 10 daily serviceable 

aircraft across nearly the whole period. More precisely, beginning in the second 

quarter of 2018, there is a significantly growing probability of sustainably falling 

below the given threshold. This metric refers to research question six imposed by 

the sponsor and defined in Chapter I.  

The Likert divergent bar chart presented in Figure 20 gives more detail on 

the magnitude of deviations from the threshold or availability gap as one of the 
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MOEs over the time frame simulated. It shows the proportion of workdays on 

which the number of serviceable aircraft is below (brown), exactly at (grey) or 

above (blue shadings) the given threshold of 10 serviceable aircraft separately 

for each year in the simulation. The zero-line in the middle of the plot represents 

the threshold provided, and the scaled shadings on each side represent the 

exact deviation or availability gap. Overall, performance and trends can be 

identified very easily with this visualization.  

 

This Likert plot shows lower decile and mean for number of aircraft serviceable 
for flight missions normalized on the given threshold of 10 aircraft, which is 
represented by the zero–line dividing both sides in the plots. Brown is below, 
grey exactly at, and blue above the threshold. Shading represents the actual 
differences according to the given legend. 

Figure 20.  Likert Divergent Bar Chart for Base Case  

For example: while on average (base case mean) the number of aircraft 

serviceable for flight operations only falls below the given threshold on about 
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11% of all workdays in 2021 which is the sixth year of the simulation; there is a 

10% chance that this number is below the threshold 100% of the time in the last 

two years (base case lower decile). The lower decile implies that there is a 90% 

chance that the number of aircraft actual serviceable for flight operations 

deviates from the threshold of 10 aircraft at least in the presented proportion of 

workdays. The lower and upper deciles provide 80% prediction bounds on 

availability at any given time for the scenario under consideration. In addition, the 

bar chart in Figure 21 gives a summary of the average fleet condition by year, 

which also provides insight into fleet availability trending over time. The chart 

shows the average distribution of fleet condition per simulated year according to 

the defined status groups. Again, percentages are not published. 

 

Figure 21.  Stacked Bar-Chart for Fleet Condition over Time with Overall 
Mean for the Six-Year Period Displayed in the Pie Chart 

The percentage of aircraft serviceable for flight operations (green) is 

decreasing over time due to an increasing number of non-recurring special 

inspections (red) and an increasing number of aircraft waiting in queue for 
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available phase maintenance (dock) capacity (grey). A high percentage of aircraft 

in failure repair (brown) reveals that insufficient aircraft reliability, non-recurring 

special inspection events, and major phase inspection can easily be identified as 

main drivers for lack of availability. A growing queue of aircraft waiting for 

maintenance (grey) determines the negative trend in availability.  

On average, with the negative trend in availability over time shown in 

Figures 19 and 21, the base case scenario shows a shortfall in the number of 

available aircrafts on about 65% of simulated workdays across the simulated 

time frame with reference to Figure 20. These outcomes provide estimates of 

average future fleet availability under the assumption that current policies and 

fleet conditions remain in place. These results imply growing challenges with 

respect to fleet availability in the near future, if the situation stays as is. 

In addition, Figure 22 shows that flight hour supply also shows a sharp 

downward trend after reaching a maximum in 2018. The upward trend that is 

seen in flight hour supply before it reaches its maximum is illusory, the result of 

new aircraft being delivered to the fleet.  
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Given single point time series results for flight hour supply reflect on base case 
scenario at 80 flight hours per aircraft and year and applied maintenance policy 2 
(inspection system variant 2). Inspection Duration and Maintenance Capacity are 
at mean level derived from given fleet live data. 

Figure 22.  Flight Hour Supply Development for Total Fleet Over 
Simulated Time Frame 

Once aircraft delivery is concluded, the supply of flight hours cannot keep 

pace with demand due to long maintenance turnaround times and the relatively 

large number of calendar-based inspections, which do not produce flight hours. 

As more reliable aircraft carry the load of the failure-prone aircraft, flight-hour 

based preventive maintenance schedules for the former are accelerated. The 

queue of aircraft waiting for maintenance grows over time as maintenance assets 

become strained. Because flight hour production is not keeping up with fleet 

utilization due to constant demand, flight hour supply of the fleet is degrading. 

Together with a growing queue, this implicates insufficient maintenance capacity 

or over-utilization of the fleet.  
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2. Response Surface Metamodeling and Analysis

Construction of a statistical metamodel that describes the relationship 

between input factors and the output response is a common end product of 

running a simulation experiment. Multidimensional linear or logistic regression 

models are often used. We start by loading the output CSV-file into an R data 

frame. Please note, once again, that some inputs like failure repair times, minor 

usage-based inspection duration, and special inspection turnaround times come 

from bootstrapped data that remain unchanged throughout the experiments. 

Also, the special inspection threshold and Weibull failure parameters for aircraft 

failure behavior remain constant throughout the experiments. Because they are 

easily changeable via code and fleet input CSV-files, respectively, they could 

also be made available for CSV-based automated input as additional study 

factors, but this is a subject for future work. Also, simulation run lengths are held 

constant at 1,584 work days for each experiment. Four factors or predictor 

variables remain for further analysis in this study.  

Prior to regression analysis, the complete data set is separated into four 

subsets, one subset for each maintenance policy. The remaining four input 

factors (yearly flight hours per aircraft, maintenance capacity and the two major 

inspection turnaround times) are used as predictor variables in linear regression 

using the lm method in R. Response variables under evaluation are availability 

rate, flight hour supply, mission completion, and dock utilization. The regression 

model fit procedure itself is done in several steps. As a start, the most simplistic 

model possible, containing only raw predictors, is used to build a preliminary fit. 

This first model fit is then used in a stepwise procedure realized with the step 

function in R, allowing quadratic effects and second-order interaction terms. The 

step function evaluates possible predictor and interaction term combinations with 

respect to the resulting Akaike Information Criterion (AIC). Finally, the 

corresponding optimal model fit recommended by step chosen with respect to a 

minimized AIC value is created. The analyst often uses judgment to refine the 

model further until a suitable model is available for further analysis.   
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3. Fleet Availability Regression Analysis

Fleet availability is considered the most important response variable, and 

is defined as the ratio of serviceable aircraft to fleet size. Since this is always a 

value between zero and one, a log-odds transformation seems appropriate.  

𝑦 = log
𝐴𝑅𝑎𝑡𝑒

1−𝐴𝑅𝑎𝑡𝑒
(8) 

As can be observed in Figure 23, the first simple linear regression without 

transformations and interaction terms in the first iteration revealed significant 

non-linear curvature in the partial residual plots, heteroscedasticity, and an R-

squared value of 0.731.  

Figure 23.  Residual plots of Simple Regression Model Fit of First Iteration 
for Fleet Availability Rate. 

Residual plots created with termplot also show a poor model fit for yearly 

flight hours per aircraft. After applying the step function in R for stepwise finding a 
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suitable fit, the logit transformation is used to transform the response variable, 

which increased the R-squared to 0.873. Still, the model lacks fit. By looking at 

the partial residual plots of each predictor generated by the termplot function, an 

inverse transformation is indicated for the planned yearly fleet utilization 

(YFP.AC) predictor, which represents yearly flight hours per aircraft. The partial 

residual plot is presented in Figure 24. Inverse transformation is done by adding 

an artificial column with the inverted utilization values to the existing data frame, 

which then is used as a predictor in the regression model. For deriving 

predictions later on, this has to be recognized in the prediction data. In the third 

and final iteration, the YFP.AC variable is manipulated with an inverse 

transformation by using a new data column yielding the inverse values of 

YFP.AC in the regression model derived in the second iteration. 

 

Figure 24.  Partial Residual Plot of YFP.AC Predictor Variable 

The resulting final model produces a reasonable fit, which covers 93.7% of 

the variability (Figures 25 and 26).  
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Figure 25.  Residual Plots of Final Iteration with all Transformations for 
Model of Fleet Availability 

Figure 26.  Partial Residual Plots of Final Iteration with All 
Transformations for Final Fleet Availability 
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The residual plots and partial residual plots look much better, as can be 

observed in Figures 23 and 24. A summary of the final regression model fit is 

presented in Table 3, showing p-values of all integrated predictors, interaction 

terms and the overall R-squared and p-value representing the quality of the fit. 

Equation 9 represents the corresponding metamodel for availability rate with 

transformations: 

 𝐴𝑅𝑎𝑡𝑒 =  
𝑒𝜂

1+𝑒𝜂   (9) 

 
with 

 𝜂 = 𝑏 +
𝑐1

𝑌𝐹𝑃.𝐴𝐶
+ 𝑐2𝐹𝐻. 𝐼𝑛𝑠𝑝 + 𝑐3𝐶𝑎𝑙. 𝐼𝑛𝑠𝑝 + 𝑐4

𝐹𝐻.𝐼𝑛𝑠𝑝

𝑌𝐹𝑃.𝐴𝐶
+ 𝑐5

𝐶𝑎𝑙.𝐼𝑛𝑠𝑝

𝑌𝐹𝑃.𝐴𝐶
  (10) 

                
             + 𝑐6𝐹𝐻. 𝐼𝑛𝑠𝑝 ∗ 𝑛𝐷𝑜𝑐𝑘𝑠 + 𝑐7𝐶𝑎𝑙. 𝐼𝑛𝑠𝑝 ∗ 𝑛𝐷𝑜𝑐𝑘𝑠 + 𝑐8𝐹𝐻. 𝐼𝑛𝑠𝑝 ∗ 𝐶𝑎𝑙. 𝐼𝑛𝑠𝑝 
 

Table 3.   R-summary of Final Logistic Regression Model Fit with 
Factors, Interactions, and Their Corresponding p-values 

 
 

The model fit of fleet availability rate presented above is shown as a 

representative example for all other regression model fitting procedures used 
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throughout this study. Although the same approach is used for all four response 

variables under review, different variable transformations may apply. The 

ultimate advantage of using a NOB design is its capability to generate data that 

can be examined in many different ways. For example, it offers opportunities to 

produce a variety of plots and analyses containing much more information than 

just response behavior over time, without conducting numerous additional 

simulation experiments. If the number of factors is large, an efficient experiment 

such as a NOB may be the only way of simultaneously studying the factors in a 

reasonable amount of time. 

In this study with only a small number of factors, an alternative to the NOB 

would be a full factorial (or gridded) design with a small number of levels for each 

quantitative factor. For example, a design that includes all combinations of the 

five levels for each of the four quantitative factors and four policy options requires 

2500 design points. The NOB is used because it allows the same size design to 

be used even if the number of factors is much larger—in this case, 512 design 

points to investigate up to 300 factors. A factorial design becomes impractical 

very quickly. If we wished to study even ten quantitative factors at five levels, 

along with the four policy options, that would require over 39 million design 

points. 

Once metamodels have been fit to the output data from a designed 

experiment, graphs can be more powerful ways of revealing the metamodels’ 

behavior. Figures 27 and 28 illustrate the metamodel results of Equations (9) and 

(10) for specific variants of the base case scenario (maintenance policy 2). These 

figures show fleet availability rate and mission completion rate as a function of 

yearly utilization per aircraft. With all other input parameters remaining 

unchanged, results of the simulation indicate a nonlinear decline in fleet 

availability with an increase in planned fleet utilization. This agrees with the 

sensitivity analysis in Section C below. These graphs also make it easy to 

evaluate fleet performance under the assumption of different levels of planned 

fleet utilization. Given a specific threshold of planned fleet utilization, the 
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corresponding fleet availability can directly be read from the graph as a function 

of planned utilization or the other way around.  

Another benefit of metamodeling is that graphs such as those in Figures 

27 and 28 can be constructed in a tiny fraction of the time it would take to make 

new simulation runs. Simulation runtime for the nine points presented in Figure 

27 with the corresponding replications alone would take about three hours of 

simulation and data preparation on a standard machine, but the metamodel 

evaluations required to make the graph take only seconds. In our study, effort is 

focused on finding ways to achieve a sustainably optimized fleet availability and 

flight hour supply over the span of the simulated period.   

NOB design results presented are based on the four-year mean fleet availability 
for time period 01/01/17 – 03/31/21, derived from approximately 23,000 
simulation runs. The NOB design matrix contained six rotations with 30 
replications each. Results shown are mean and 90% prediction interval for fleet 
availability rate in % derived by utilizing the predict- function in R. 

Figure 27.  NOB Result for Base Case Scenario—Availability Rate over 
Fleet Utilization (Yearly Flight Hours per Aircraft) 
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That especially includes finding a possible solution for trend reversion in 

availability and flight hour supply. Base-case results for mission completion as a 

performance metric are shown in Figure 28. It is easy to observe how mission 

completion, which is the proportion of flight hours actually completed in flight 

missions to the total demand in flight hours, declines with increasing fleet 

utilization.  

 

NOB design results presented are based on the four-year mean mission 
completion rate for time period 01/01/17 – 03/31/21, derived from roughly 23,000 
unique simulation runs. The NOB Design matrix contained six rotations with 30 
replications each. Results shown are mean and 90% prediction interval for 
mission completion rate in % derived by utilizing the predict- function in R. 

Figure 28.  NOLH Result for Base Case Scenario—Mission Completion 
Rate over Fleet Utilization (Yearly Flight Hours per Aircraft) 

Flight hours lost due to failures and the number of downed aircraft 

increase with utilization. Referring to research question 2, the defined threshold 

for mission completion for the fleet in practice given by fleet management is 80%. 

Although the outcome values cannot be published at this point, the maximum 

planned utilization metric compliant to this guideline is easy to derive from the 

plot in Figure 28. It is easy to see, if achievement of this level of performance is 
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realistic under the given factor combination, or not. We discuss this in the 

following subsection.  

4. Inspection Duration Analysis

The turnaround time to perform a major phase maintenance inspection is 

an important determinant of availability. In addition to the base case scenario at 

80 flight hours per aircraft per year including the current mean inspection 

duration (for usage-based inspections only) derived from fleet data, two other 

levels of interest provided by the sponsor are used in simulations of our model, 

each of which represents a reduction in turnaround times. Figures 29 and 30 

present results for conducting inspections at 80 and 100 yearly flight hours per 

aircraft, respectively.  

Single point time series results shown present availability rate as function of time 
for inspection. Duration variations relative to base case level of turn-around times 
at planned fleet utilization of 80 flight hours. Level alpha: -30%, Level bravo: -
40%, Level Charlie: -60%, Level delta: -70%. Maintenance capacity alpha 
represents base case capacity given by fleet live data 

Figure 29.  Changes in Fleet Availability over Time for Different Inspection 
Turnaround Times of Major Usage-based Inspections at 80 

Flight Hours per Aircraft and Year 
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These results are based on single point time series experiments. Not 

surprisingly, a decrease in inspection turnaround times improves the average 

fleet availability, but it is of interest to note that a pattern of declining availability 

past 2017 still occurs under each of the reduction scenarios considered. This 

finding suggests that significant changes to the system are needed, such as 

fundamental changes in maintenance policy, increased capacity, substantial 

reduction in repair times, or improved aircraft reliability. These trends become 

worse with increasing fleet utilization. 

 

Single point time series results shown present availability rate as function of time 
for inspection Duration variations relative to base case level of turn-around times, 
at planned fleet utilization of 100 flight hours. Level alpha: -30%, Level bravo: -
40%, Level Charlie: -60%, Level delta: -70%. Maintenance capacity alpha 
represents base case capacity given by fleet live data 

Figure 30.  Changes in Fleet Availability over Time for Different Inspection 
Turnaround times at 100 Flight Hours per Aircraft 

In Figure 30, all scenarios provide an inferior fleet performance relative to 

the base case at 100 yearly flight hours per aircraft. As noted above, improving 

inspection turnaround times alone is not sufficient to achieve stable fleet 

performance at a satisfactory level of availability. The Likert divergent stacked 

bar chart in Figure 31 illustrates how the frequency of threshold violations 
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declines over the years with decreasing inspection turnaround times. Presented 

is the lower decile for each case. This means that there is a 90% chance that 

results predicted by the model will occur at least at the levels shown in reality. 

This Likert plot shows lower decile for number of aircraft serviceable for flight 
missions normalized on the given threshold of 10 aircraft, which is represented 
by the zero – line dividing both sides in the plots. Brown is below, grey exactly at, 
and blue above threshold. Shading represents the actual differences according to 
the given legend. 

Figure 31.  Likert Plot of Deviation from Threshold for Number of 
Serviceable Aircrafts (Base Case and Base Case Variations 

with Respect to Inspection Duration) 

Percentages on the blue side (days with more than 10 serviceable 

aircrafts) significantly increase over the years, while percentages on the brown 

side (threshold violations) decrease simultaneously. Although threshold violations 

decrease over time, even in the best-case scenario there is a significant number 
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of violations especially in the sixth year (2021). This effect is due to the 

decreasing trend observable in the time series plots in Figures 19, 29, and 30. 

Therefore, even though turnaround time is a factor that drives fleet dynamics, 

improving it in isolation is not sufficient to deliver satisfying results.  

5. Reliability Analysis

Because tolerating a large reduction in fleet utilization is not an acceptable 

option, we examine the effects of changes made to maintenance policy, capacity 

and aircraft reliability. The simulation results presented in Figures 32 and 33 are 

produced under the assumption that the mean time between failure (MTBF) is 

twice as large as estimates derived from the current fleet data.  

Single point time series results shown present availability rate as function of time 
for inspection Duration variants relative to base case at planned yearly fleet 
utilization of 80 flight hours per aircraft. Inspection duration - alpha: -30%, bravo: 
-40%, Charlie: -60%, delta: -70%. Aircraft reliability is doubled (MTBF x2). 

Figure 32.  Changes in Fleet Availability over Time for Different Inspection 
Turnaround Times and MTBF Improved by a Factor of 2 
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The impact of maintenance policy and capacity on fleet performance is 

treated in the NOB section (Section C of this chapter). Technical measures such 

as software updates, improvement of components over time, or progress along 

the learning curve of personnel, are ways to improve aircraft reliability in the 

future. Figures 32 and 33 show the corresponding model response on availability 

and flight hour supply in time-series representations. Although it is generally the 

case that improvement in aircraft reliability leads to improvement in fleet 

availability, the direct comparison of fleet availability shown in Figure 32 reveals 

interesting behavior. A reduction of inspection turnaround time of about 30% in 

principle does not prevent the negative trend from appearing, although fleet 

availability is improved on average; 10% more effort does the job much better. 

With a reduction of 40% in turnaround time, fleet availability improves even more 

and, more importantly, the trend loses momentum quickly. Therefore, the 

recommendation implied by these simulation results is the following: reduction of 

inspection turnaround time by at least 60% together with an improvement in 

aircraft reliability by a factor of 2. Additional maintenance capacity seems to 

support positive effects even more. Figure 33 highlighting effects on flight hour 

supply enforces the previous statements. An increase of maintenance capacity of 

at least 50% is indicated. The recommendations given in Section D of this 

Chapter will shed more light on the final statements. This increase in capacity 

necessarily requires more personnel, infrastructure, and equipment at levels that 

cannot be quantified within the scope of our study.  

An inspection module that covers personnel requirements and flow of 

spare parts, as well as aircraft key equipment such as calendar-based 

maintenance items like engines or gear boxes, could be integrated into the 

existing model to achieve further insight into resourcing requirements. This is 

discussed in more detail in Section D of this chapter.   
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Single point time series results shown present bank time as function of time for 
Inspection Duration variants relative to base case - alpha: -30%, bravo: -40%, 
Charlie: -60%, delta: -70% and changes in maintenance capacity. 

Figure 33.   Flight Hour Supply over Time for different Inspection 
Turnaround times of major usage-based inspections at 80 
Yearly Flight Hours per Aircraft and MTBF Improved by a 

Multiplicative Factor of 2 

C. ADDITIONAL RESULTS 

1. Comparison of Maintenance Policies 

Four maintenance policies are compared in the study, representing 

different mixes of usage- and calendar-based inspections (see Chapter I, Section 

C., para. 4). Simulation results for availability rate as function of planned fleet 

utilization is presented in Figure 34. 
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This plot shows simulated outcome for fleet availability rate in % over fleet 
utilization in flight hours per aircraft and year for all maintenance policy options 
studied. Results shown include mean and 90% prediction interval for availability 
rate derived by utilizing the predict- function in R. 

Figure 34.  Fleet Availability as Function of Utilization with Four 
Maintenance Policy Options in Base Case Scenario 

Option 1 became obsolete with the introduction of maintenance policy 

option 2 on 1 April 2016. Nevertheless, this option is included in the study for 

comparison purposes and to quantify the impact of the historical management 

decision representing the switch from policy 1 to policy 2. Again, option 2 or 

maintenance policy 2 constitutes the inspection system for the base case 

scenario for this study.  

Figure 34 presents the results for comparison of the four maintenance 

policies under base case conditions. With respect to the results shown, canceling 

policy option 1 was obviously a good decision. It performs significantly worse 

than all the others. Further comparison of option 1 design combinations (results 

not presented), including actual factor improvements, could not outperform the 

base case scenario. All options have a non-linear declining trend with respect to 

increasing fleet utilization in common, which could already be observed for the 

base case scenario. Although the advantage is declining with increase in fleet 
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utilization, by comparing the different maintenance options, non-negligible 

differences in fleet availability can be observed. Also, options 3 and 4 seem to 

dominate the base case scenario including option two. Augmented with other 

measures, a change in maintenance policy could result in significant 

improvements in performance.  

2. Maximizing Return on Investment  

To find out which factor has the most significant influence on fleet 

availability, the following isolated modifications are evaluated in direct 

comparison with the base case scenario by using the NOB metamodel results 

and maintenance policy 2, after changing the hard-coded MTBF parameter to the 

original MTBF2. Plots are provided showing inspection turnaround time -50%, 

and Maintenance Capacity2. Figure 35 shows the results of this analysis.  

 

NOB simulation results shown represent isolated factor changes in inspection 
duration, capacity and aircraft reliability (MTBF). All changes are either by factor 
2 or ½ if applicable. This response-surface subspace represents a sensitivity 
analysis for comparison of factors. 

Figure 35.  Sensitivity Analysis of Factors MTBF, Inspection Turnaround 
Time, and Maintenance Capacity in Connection with 

Maintenance Policy 2 
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For this examination, maintenance capacity and MTBF are increased by 

factors of 2, and inspection duration is decreased to 50% of the base case level. 

Predictions should not be treated as precise values, but the metamodel still indicates 

the relative impact of the factors to improve or deteriorate the situation. From the 

perspective of isolated changes holding everything else constant, maintenance 

capacity has the biggest impact on fleet availability, inspection duration comes in 

second for yearly flight hours above 60, and MTBF has the lowest impact, especially 

for higher utilization rates. This effect was anticipated, because with this usage-based 

failure generation the number of failures increases with increase in usage. Also, an 

improvement in each measure on its own results in increased fleet availability in 

comparison with the base case, which is not surprising.  

Despite our findings, assessing maintenance capacity on its own does not 

yield useful insights because existing aircraft docks are able to perform more 

inspections per year with declining turnaround times. Therefore, demand for 

aircraft docks might decrease with respect to given planned fleet utilization 

levels. The interaction between these two factors is important to investigate, 

which is done in the recommendations section in this chapter. Additionally, 

building up capacity is a time consuming, expensive business, which always 

yields the risk of unacceptably long dock idle times. Recall that some idleness is 

required for stochastic queuing systems, otherwise the expected queue length 

can go to infinity. Increasing maintenance capacity as a management option 

should always be considered in conjunction with other measures like a decrease 

in the time waiting for inspections to begin. Therefore, the primary focus for 

recommendations lies in finding an effective combination of both factors with 

parallel crosschecking of the average number of available (idle) docks. 

3. Fleet Availability Rate as Function of Utilization

Figures 36 and 37 show the effects of maintenance capacity and inspection 

duration on fleet availability as functions of planned fleet utilization for different 

levels. The following metamodel results shown represent isolated changes in 
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inspection duration. Inspection duration is decreased in contrast to base case level 

by the presented percentage while keeping everything else constant. 

Figure 36.  Fleet Availability over Yearly Flight Hours per Aircraft for 
Inspection Duration and Maintenance Capacity at Base 

Case Level 

NOB metamodel results shown represent isolated changes in maintenance 
capacity. Capacity is increased in contrast to base case level by the presented 
percentage, while keeping everything else constant. 

Figure 37.  Fleet Availability over Yearly Flight Hours per Aircraft  for 
Maintenance Capacity and Inspection Duration at Base Case 

Level  
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4. Flight Hour Supply as Function of Utilization

By examining Flight Hour Supply as a function of utilization shown in 

Figures 38 and 39, the same trends as in Figures 36 and 37 can be observed. 

Again, the base case scenario is outperformed by all alternatives evaluated, 

while maintenance capacity dominates inspection turnaround time throughout the 

whole interval. Both fleet availability and flight hour supply indicate changes are 

due in maintenance capacity and inspection turnaround time. Since a change in 

inspection turnaround time alone does not deliver satisfying results regarding the 

given daily aircraft availability threshold (see Figure 29), simultaneous changes in 

both factors are studied in section 6 of this chapter using the maintenance policy 

currently in practice. Results are compared and presented in terms of yearly 

distributions for deviation from threshold. To conclude this section, Figure 40 

gives results for mission completion as function of utilization.  

NOB simulation results for flight hour supply (bank time) shown represent 
isolated changes in inspection duration. Inspection duration is decreased from 
the base case level by the presented percentage while keeping everything else 
constant. 

Figure 38.  Flight Hour Supply as function of Planned Fleet Utilization for 
Inspection Duration—Option 2 
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NOB simulation results for flight hour supply (bank time) shown represent 
isolated changes in maintenance capacity. Capacity is increased from the base 
case level by the presented percentage, while keeping everything else constant. 

Figure 39.  Flight Hour Supply as Function of Planned Fleet Utilization for 
Maintenance Capacity—Option 2 

5. Mission Completion Rate as Function of Utilization

Figure 40 shows the impact of inspection duration on mission completion 

rate as a function of planned fleet utilization. Although improvements through 

reduction of inspection turnaround time are indicated, the negative trend with 

increasing planned utilization is observable. This effect is now shown to be 

present for all measures of effectiveness.  
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NOB simulation results for mission completion shown represent isolated changes 
in inspection duration. Inspection duration is decreased in contrast to base case 
level by the presented percentage while keeping everything else constant. 

Figure 40.  Mission Completion over Yearly Flight Hours per Aircraft for 
Inspection Duration—Option 2 

D. RECOMMENDATIONS 

For development of suitable recommendations, different combinations of 

maintenance capacity and inspection turnaround times are evaluated at three 

levels of planned fleet utilization (at 80, 100 and 120 flight hours per aircraft and 

year). As a rule of thumb, maintenance capacity is selected as conservatively as 

possible to minimize the number of idle aircraft docks. Although changing any of 

the factors is not easy to do in practice and may also be expensive, inspection 

turnaround times are considered to be the best pick. As an example, according to 

the sponsor, the Australian Army is doing a remarkable job by performing the 

major inspections in just three months. As mentioned before, maintenance 

capacity and inspection turnaround times always should be evaluated together. 

After narrowing down factor combinations for these two factors, the remaining 

three maintenance policy options 2, 3, and 4—which represent different 

inspection systems—are studied under the given scenarios. Finally, reliability is 

altered by evaluating mean time to failure at three different multiples of the 
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baseline (2, 2.25, and 2.5), if previous changes are not sufficient to reach given 

margins. Although each individual aircraft has a defined reliability derived from 

live fleet data, it can be influenced by applying technical measures such as 

software updates or improvement of components.  

The factor settings were chosen after considering the earlier results, and 

discussions with the sponsor about what changes to reliability are of interest to 

study. New runs are required because the MTBF was not included as a factor in 

the initial study. It is varied at just a few levels because it is currently hard-coded 

into the simulation model and cannot be easily manipulated. The results that 

follow could have been estimated using metamodels, as in earlier studies, but a 

different approach was taken. Confirmation runs of the simulation were created, 

by generating 30 replications of the selected factor combinations, to ensure that 

the improvements associated with the final recommendations due not suffer from 

any lack-of-fit of the metamodel.  

1. Rough Estimation via Threshold 

Figure 41 contrasts evaluated factor combinations for maintenance 

capacity and inspection duration against the base case scenario at the 80 FH 

level. Results presented show a significant improvement in the number of daily 

available aircraft throughout the years. While reducing the proportion of days with 

threshold violations in the first year, nearly all other years are at or above the 

threshold close to 100% of the time. The first year is primarily determined by fleet 

condition at t0 which includes important properties of the aircraft given by fleet 

data. Therefore, differences shown for 2015 are of little interest.  

Given the current reliability of aircraft in the fleet and failure repair times, 

simulation results presented in Figure 41 imply that at 90% of days in years two 

to six, a reduction of inspection turnaround time of 60% with a simultaneous 

increase in maintenance capacity of 50% is sufficient to meet the given threshold 

of daily aircraft availability. This investment produces a substantial improvement 

in the number of aircraft available for flight missions on a daily basis and reduces 
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the proportion of days simulated with threshold violations by 64% (from 74.7% to 

27%). This means that on average there is a 90% chance that on 73% of all days 

in the six-year period, the given threshold of 10 aircraft is met or exceeded. 

Although daily availability of aircraft could be improved further by choosing a 

more rigid combination with even lower inspection duration, this conservative 

result is carried on, due to significant efforts that have to be done to achieve 

these levels.  

 

This Likert plot shows lower decile for number of aircraft serviceable for flight 
missions normalized on the given threshold of 10 aircraft, which is represented 
by the zero – line dividing both sides in the plots. Brown is below, grey exactly at 
and blue above threshold. Shading represents the actual differences according to 
the given legend. 

Figure 41.  Yearly Distributions for Deviation from Threshold of Daily 
Available Aircraft Covering Presented Design Points at 80 

Flight Hours per Aircraft and Year 

Figure 42 shows results for 100 flight hours per aircraft and year. Since 

the availability gap or deviation from the threshold of number of daily available 
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aircraft as an MOE is derived from the availability rate, similar conclusions arise. 

The highlighted results are considered as recommendations for further review, 

since fleet availability alone is not enough to make conclusions about overall 

performance of recommended adjustments. In particular, dock utilization as an 

MOE has to be cross-checked to ensure that utilization of maintenance capacity 

is sufficiently high to warrant the additional cost, while not so high that 

maintenance queues build up and availability suffers.  

Figure 42.  Yearly Distributions for Availability Gap Covering Presented 
Design Points at 100 Flight Hours per Aircraft and Year 

From Figure 42, it is clear that an increase in maintenance capacity of 

50% alone is not sufficient to ensure that the daily availability threshold criterion 

of 10 aircraft is met throughout the simulated time line. Because the reduction of 

inspection duration to its feasible lower bound (-70%) at the level of a 50% 

improvement in capacity does not result in significant improvement of the number 
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of available aircraft per day, a 100% increase in capacity is indicated. This level 

represents a doubling in the number of available aircraft docks.  

To develop finalized recommendations from these estimates, the indicated 

factor combinations are analyzed with respect to MOE availability rate and 

mission completion rate for the three remaining maintenance policies as 

functions of planned fleet utilization to localize prioritized estimates. Finally, the 

refined results are cross-checked with respect to dock utilization to ensure 

reasonable and realistic results.  

2. Localization of Prioritized Estimates

Results for the prioritized factor combination at 80FH level (-60% in 

inspection duration and +50% in capacity), in combination with remaining 

maintenance policies presented in Figures 43 and 44, show a significant 

improvement in comparison with the base case (slate blue), but only insignificant 

differences between policies, especially for mission completion. Changing the 

maintenance policy is an extensive measure that always bears the risk of 

negative effects on inspection turnaround times, which would outweigh the small 

advantage in performance especially for higher fleet utilization levels. 
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Presented NOB results show availability as function of planned fleet utilization in yearly flight hours per aircraft for the three 
remaining maintenance policy options 2, 3 and 4.  

Figure 43.  Estimate for Recommendation at 80 FH, All Options with Inspection Duration – 60% and 
Capacity + 50%, MTBFx1 (left) and MTBFx2 (right) for Availability Rate 
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Presented NOB results show availability as function of planned fleet utilization in yearly flight hours per aircraft for the three 
remaining maintenance policy options 2, 3 and 4. 

Figure 44.  Estimate for Recommendation at 80 FH, all Options with Inspection Duration – 60% and 
Capacity + 50%, MTBFx1 (left) and MTBFx2 (right) for Mission Completion Rate 
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Therefore, maintenance policy option 2 (dark blue) is prioritized, to avoid 

the risk of increasing turnaround times. While comparing given results for 

availability and mission completion rates at the original level of aircraft reliability 

on the left and doubled MTBF on the right, the global improvement for fleet 

performance is obvious. By increasing MTBF by a factor of two, overall 

improvements of about 4–6% for fleet availability rate and roughly 10% for 

mission completion rate can be observed at the 80, 100, and 120 FH levels for 

the presented recommendation. Although this is a hypothetical view on fleet 

condition with respect to reliability, this is a useful insight with implications for 

future requirements of aircraft reliability. Changing aircraft reliability is hard to 

achieve, but possible with respect to software updates, improvement in reliability 

of components, and additional spare parts. Results for mission completion rate in 

Figure 44, in particular, reveal that improvement in aircraft reliability is vital to 

achieve the desired completion level of 80%, since the shortfall at the 80 FH level 

still is evaluated at about 9% with the original MTBF values. This effect is even 

more significant at higher fleet utilization levels, although improvements in 

contrast to the base case are observable. 

3. Cross-Checking Dock Utilization

With reference to Figure 45, the impact of an increase in number of 

aircraft docks becomes clear. On average, at least one dock is found to be in idle 

state for all levels of utilization, while the base case shows no slack. Zero slack in 

dock capacity is always a sign of an unstable system in queueing theory, which 

means results indicate insufficient maintenance capacity for the base case, 

resulting in an increasing queue length over time. This effect is already shown in 

Figure 21. Having a ratio between queue length and average number of idle 

docks less than 0.8, such that there are 20% more idle docks than number of 

aircraft waiting for inspection entry, is said to indicate a stable system. Ratios 

between 0.8 and 1 are already indicating insufficient server capacity through 

increasing queue lengths. 
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With respect to the recommended option including a 50% increase of 

maintenance capacity, two to three docks are idling on average. Although having 

idle servers is in line with queueing theory, this level of capacity may be too 

optimistic. Although no information about possibly imminent queue length is 

given so far, a 25% increase in capacity seems to be sufficient at the 80 and 100 

FH levels, while 38% seems to be a good fit for a fleet utilization of 120 FH per 

aircraft and year. The previous statement is based on moderate slack in 

maintenance capacity utilization of about 1.5 idle aircraft docks on average. The 

question remains whether these factor changes will satisfy the sponsor-given 

availability and mission completion criteria. 

 

NOB simulation results present estimated mean number of idle aircraft docks as 
function of planned fleet utilization. Maintenance capacity is increased in contrast 
to base case level by the presented percentage while keeping everything else 
constant. 

Figure 45.  Dock Utilization for Different Maintenance Capacity Levels as 
Function of Fleet Utilization—Option 2 

To get a better understanding of utilization of maintenance capacity from 

simulated outcomes for recommendations, the ratio between the average queue 



 108 

length and the average number of idle aircraft docks is evaluated. We call this 

AQ/AD. Examination of different queueing techniques is not a part of this study 

and is subject to future work. 

4. Summary of Final Results 

The previously considered changes to inspection duration (-60%, -70%) 

with simultaneous changes in maintenance capacity (range: +25% to +50%) are 

now examined for each planned fleet utilization level of interest. All measures of 

effectiveness are examined including average number of idle aircraft docks and 

additionally the average number of aircraft waiting for inspection entry in order to 

determine maintenance system stability (Table 4).  

Table 4.   Sensitivity Analysis Summary for Recommendations at Three 
Levels of Fleet Utilization (80,100,120 FH)  

  

InQ = Number of Aircraft waiting for inspection entry, ARate = Availability Rate, 
THD = Threshold deviation in number of daily serviceable aircraft, MC = Mission 
Completion rate, FHS = Flight Hour Supply. 
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In cases in which satisfaction of the given mission completion rate 

threshold of 80 % could not be ensured, different levels of aircraft reliability were 

evaluated, too.  

Although fleet condition is determined by the data provided, it reveals that 

there exists no state of fleet performance that satisfies the given constraints 

regarding all MOEs without significantly improving aircraft reliability as a factor 

that drives fleet dynamics. Of all the MOEs, an 80% level of mission completion 

is the hardest to achieve. Table 4 summarizes all results covering the three 

utilization levels that are considered in the study. Resulting recommendations for 

each level are derived by evaluating all four MOEs and simultaneously taking 

queue length into account. Also, different levels of average aircraft reliability are 

taken into account where appropriate. In our analysis, the upper bound for 

increased maintenance capacity is taken to be +50% and the lower bound for 

major inspection turnaround times is taken to be -70%. These bounds are a 

result of consultations with subject-matter experts in the German Army.  

5. Recommendations

Although a significant improvement in fleet availability and flight hour 

supply could be achieved with the factor combinations corresponding to each of 

the confirmation runs in this section, the given mission completion constraint of 

80% could only be achieved with a substantial improvement of aircraft reliability. 

This improvement is determined by an average increase of MTBF of at least a 

factor of 2 across the entire fleet. A recommendation at the current MTBF level is 

possible for a utilization of 80 FH and 100 FH, but only by accepting a substantial 

reduction in mission completion rate. This is not the case for 120 FH:  to achieve 

a sustainable fleet performance at 120 FH (120 x 53 = 6,360 FH in total for the 

fleet) requires improvement in aircraft reliability, as well as improvements in 

inspection duration and dock capacity. In addition, there is a trade-off between 

availability and the number of idle aircraft docks. The detailed recommendations 

are presented in Table 5.  
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Table 5.   Summary of Recommendations  

Scenario Change in Policy Results of Change 

Duration Capacity MTBF AQ/AD AR THD MC FHS 

80 FH -60% +25% 1.0 0.67 +7.7% x   
1.9 

- 9% +34% 

100 FH -60% +50% 1.0 0.75 +8.9% x   
6.3 

-11% +41% 

120 FH -70% +38% 2.5 0.75 +20% x 
11.9 

80% +56% 

This table summarizes results simulated outcome for recommendations including 
all measures of effectiveness used in this thesis, availability rate (AR), threshold 
deviation or availability gap (THD), mission completion rate (MC) and flight hour 
supply (FHS) plus the AQ/AD ratio. 
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V. CONCLUSION AND OUTLOOK 

A. SUMMARY 

The objectives of this study are to develop and exercise a simulation-

based model of the German TIGER aircraft fleet. Our model quantifies the effects 

of several factors on fleet availability, flight hour supply, and mission completion. 

Although not all possible factors could be incorporated into the model due to time 

constraints, we show that our model is able to accurately reconstruct the recent 

condition of the fleet.   

1. General Benefit 

The general benefit of this work is not only the logistic TIGER fleet model 

and analysis results that were achieved, but also the insight gained into the 

actual fleet data following extended discussions with the sponsor about the 

interpretation and practical implications of the study results. Results from the 

analysis presented here offer insight on the future state of the fleet conditioned 

on actions that are taken to improve its performance. Estimated aircraft failure-

time probability distributions give insight on reliability of aircraft, which is a 

practical aid for mission planning. This technique, applied to aircraft equipment 

and components, can be used to set inventory and maintenance policies, 

compare different maintenance policies, identify reasons for performance 

shortfalls, and estimate the expected number of aircraft available daily for flight 

missions.    

2. About the Model 

The final model structure is easily adaptable to include future fleet 

parameter changes, in- and outflow of aircraft, and to incorporate other aircraft 

types. However, given the mathematically intense processing for visualization in 

R and the lack of a graphical user interface, it will require adequately trained 

personnel in order to realize the full potential of this technique. The model itself 
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works stably for the subset of input design space studied and it shows 

reasonable accuracy in predicting outcomes, with a mean error of about 4.3% for 

the validation time period 1 April 2015 to 31 December 2016. Although a range of 

explanatory variables are considered, the current version of the model excludes 

personnel requirements, key equipment, and spare parts with their corresponding 

categories. Utilization of maintenance capacity can be added to the output, but 

queueing protocols are not currently included in the model.  

B. CONCLUSIONS 

1. Base Case Analysis  

The motivation for the study is to examine the worsening of aircraft 

availability if current usage of the German Army aircraft fleet is continued as-is, 

which constitutes the base-case scenario. Model validation reproduces this trend, 

and the study shows how changes to fleet resourcing and management can be 

expected to affect it.  

a. Fleet Availability 

Fleet availability is projected to stay at a consistently low level around 

current values during the whole simulated period unless corrective measures are 

adopted. Negative impacts are projected to manifest in later years, especially in 

2019 and 2020. The two ways to increase long term availability under the current 

circumstances are to reduce utilization or grow the fleet size. 

b. Flight Hour Supply 

Flight hour supply curvature develops a global maximum around the time 

that the aircraft delivery phase ends. After that it starts to degrade with a 

relatively constant negative slope. Flight hours are consumed faster than they 

can be replenished. As a result, fleet performance degrades. Although the 

various scenarios considered in the study are quantitatively different, the same 

pattern holds for each.  
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c. Mission Completion 

Mission completion averages to about 60% for the base case, but that 

average contains a decline at a constant slope of -10% for each flight-hour 

increase of 20 hours per aircraft per year. Mission completion at target flight-hour 

levels (120 FH) on average drops to 40%, which is only half of the desired target 

level.  

d. Bottom Line 

Although the management decision to change the maintenance policy 

from option 1 to option 2 on 1 April 2016 shows significant positive effects, 

additional enhancements are still needed to achieve sustainable fleet 

performance. 

2. Recommendations  

Upon reviewing all results from our study, option 2 performs best overall. 

Specific findings are outlined below: 

a. Utilization of 80 Yearly Flight Hours per Aircraft 

Improving turnaround times for major inspections alone does not reverse 

the negative trend in fleet availability and flight hour supply. Also, it does not 

keep the daily number of available aircraft from falling below the target threshold 

a significant proportion of the time, especially in years five and six. Given existing 

failure repair time distribution, aircraft reliability, special inspection probability 

threshold, and minor inspection turnaround times, a significant improvement can 

be achieved by simultaneously decreasing major usage-based inspection 

turnaround times by 60% and increasing maintenance capacity about 25%. 

Simulation results predict threshold violations to be at only 3% by the sixth year. 

Despite poor outcomes in the first year, which is anchored by the current fleet 

status, the rest of the simulated period is predicted to have a sustainable 

availability of aircraft. On average, fleet availability is estimated to improve about 



 114 

9% over the simulated period. Also, mission completion, although 9% below the 

target given by the sponsor, on average increases by about 6.4%.  

Because building maintenance capacity, especially in the military 

environment, is a time-consuming and expensive undertaking, expanding 

capacity to a certain degree requires careful consideration. A 25% increase in 

capacity combined with a 60% decrease of inspection turnaround time, while 

keeping inspection queue and dock idle times in balance, would be sufficient to 

achieved desired goals. 

b. Utilization of 100 Yearly Flight Hours per Aircraft 

Our recommendation for utilization at 80 flight hours per year does not 

perform satisfactorily at 100 flight hours with respect to fleet availability and 

mission completion, unless maintenance capacity is increased while keeping 

inspection turnaround times at the same level. To keep inspection queue length 

and idling dock capacity in balance, no more than a 50% increase in capacity is 

recommended. With this recommendation, fleet availability is estimated to 

improve about 9%. While mission completion is predicted to remain 11% below 

threshold, it can be improved by 10.6% relative to the situation without changes 

in aircraft reliability. If aircraft reliability, expressed by the mean time between 

failures (MTBF), can be improved by a multiplicative factor of 2.25, then the 

mission completion threshold level is achievable while improving fleet availability 

by about 23%.   It is not clear, however, how an improvement of this magnitude 

can be achieved or even if it is physically achievable. However, direct 

conversations with the sponsor indicate that they believe improvement is 

possible, and they intend to pursue this goal. 

c. Utilization of 120 Yearly Flight Hours per Aircraft 

A sustainable fleet performance that complies with all given thresholds 

and constraints would be achieved by reducing inspection turnaround times by 

70%, the theoretical lower bound for the German TIGER fleet as defined by 

subject-matter experts, and by simultaneously increasing maintenance capacity 
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about 50% and improving aircraft reliability (MTBF) by factor 2.5. These targets 

are based on the assumption that all other factors and parameters remain 

unchanged.    

d. Impact on Management Practice 

Despite acknowledging issues arising from the very young age of the 

TIGER fleet, preliminary results from this study have already been presented at 

integrated planning team meetings (IPT) with industry. A follow-on experiment is 

being planned to reveal weaknesses and to identify efficiency improvements in 

maintenance policies that may enhance future inspection performance.  

Another use of our work is to quantify the impact of different maintenance 

policies on fleet performance. For example, the management decision to change 

the maintenance policy from option 1 to option 2, effective since 1 April 2016, 

could be quantified to evaluate the effects of this decision. Similarly, option 3 has 

been evaluated to show the impact of an alternative maintenance policy on fleet 

performance, especially with increasing utilization. Since options 3 and 4 show 

inferior simulated fleet performance relative to option 2, these results can help 

management save time and money by avoiding an imminent risk of increased 

inspection turnaround times resulting from the proposed changes in policy.    

The research question about placement of maintenance personnel could 

not be answered explicitly, but some insight can be gained. An extension of the 

model to include maintenance capacity is indicated, to yield recommendations for 

the appropriate aircraft dock crew sizes needed to properly operate the docks. 

We recommend allocation of workers in line maintenance as a subject for future 

work. 

C. FUTURE WORK 

1. Queueing Protocols  

Currently the management of fleet data is handled using a Python 

dictionary data type, which follows management rules of hash tables. Hence, the 
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fleet object containing all the aircraft is not sortable. When there are aircraft 

waiting for major maintenance inspection in the fleet and dock space becomes 

available, the first aircraft encountered in the unordered dictionary that matches 

the inspection-due criteria will be chosen for inspection, no matter how long it has 

been waiting so far.  

Given the complete lack of ordering, the inspection assignment is de facto 

random. It is possible that a specific aircraft might never start its inspection within 

the time frame being simulated. Since individual aircraft are not the focus of this 

study, the order of inspection has been assumed to be negligible with respect to 

overall fleet availability, but this deviates from the assignment methodology used 

in practice. The model implementation might have some effect on the flight hour 

supply of the fleet as an MOE. Performing calendar-based inspection does not 

produce flight hours, since the usage calendar will not be renewed. Hence, due 

to prioritization, fewer flight hours will be reproduced for the fleet, and flight hour 

supply is increasingly degraded over time. The FIFO principle maps actual 

operations better, without distinguishing between types of inspection—only the 

time stamp counts. While FIFO would be a better fit for current practices, the 

model used for this study is predicated on the hash table’s native behavior, and 

effects on waiting times and prioritization of aircraft for maintenance are treated 

as negligible. However, the queue length and number of idle docks are tracked 

and reported for analysis, and could be examined in more detail. Future model 

development should include explicit queuing protocols in order to deal with heavy 

fleet utilization or mission deployment scenarios. Very high operational readiness 

requirements might dictate prioritization of certain aircraft over others under a 

given set of conditions in that case. Another alternative might be to service 

shortest processing times first. Due to time constraints for this study, the 

evaluation of different queuing protocols is a subject for future work. 
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2. Aircraft Assignment Algorithm

The aircraft assignment algorithm is constructed to reflect subject-matter-

expert opinion. Aircraft assignment is driven by a monthly updated utilization 

budget with respect to flight hours remaining until the next inspection is due. In 

practice, this updating process is done on a daily basis, which also takes special 

events such as large exercises into account. The assignment algorithm can be 

improved by allowing multiple assignment policies to be evaluated concurrently. 

This could include reliability-driven or dock-utilization driven aircraft assignment 

with daily utilization updates. By incorporating failure probabilities and residual 

TBF values, or the expected number of days until maintenance capacity 

becomes available, a defined utilization of individual aircraft could be 

implemented, which might influence fleet performance.  

3. Key Equipment and Personnel Module

The helicopter system spans several major groups of equipment that 

require different fields of expertise for maintenance. Instead of focusing on 

reliability and inspection system of the entire aircraft, the aircraft object in the 

simulation model could be implemented with its key equipment as a subset of 

material that is modeled by tracking component-level properties, maintenance 

policies, and flight safety constraints. The aircraft then would have particular 

causes of failure that require a defined mix of expertise, man hours and special 

spare parts, any of which might be unavailable. The same methodology would 

apply to inspections. With this methodology, the number of maintainers in both 

line maintenance and deep level maintenance could be studied using simulation, 

which would answer the question of personnel and equipment demand. 

However, this approach would involve greater complexity since it would require 

additional fleet data such as number of personnel work hours or maintainers of 

each specialty field needed for each maintenance action, as well as the number 

currently available for work. This modeling problem could represent a new 

research project in its own right. 
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4. Inventory Policy Module 

Inspections or other maintenance tasks like failure repair often are 

delayed due to missing spare parts. This could have many causes, including long 

production lead times, obsolescence, or simply the applied inventory policy. By 

using an equipment and spare part reliability model, demand for spare parts 

could be generated and served by an inventory module, which would require 

modeling of key equipment. This module could account for demand in key spare 

parts and aircraft main equipment, which has the potential to improve fleet 

availability as well as mission completion and flight hour supply.   

5. Inspection Module 

In our model, the inspection durations are given by inputs that are 

assigned fixed values for every aircraft and every inspection. Alternately, an 

inspection module could generate this number by simulating the network of 

maintenance tasks with the corresponding probabilities of delay due to several 

new input factors, which drive inspection turnaround times, such as spare parts 

inventory, available maintenance personnel, misconduct, and many more. Using 

this module, inspection duration itself could be optimized through simulation. 

Such a model does not necessarily need to be implemented in the fleet model—it 

also could be deployed in a stand-alone approach. 

6. Mission Deployment 

Mission deployment is always stressful for humans, aircraft, and material. 

It has a huge impact on fleet performance due to availability constraints at the 

deployment location. Because resources such as personnel, key equipment, 

spare parts, and tools are limited, prioritization of maintenance tasks is most 

likely to cause impact on procedures at home. In addition, aircraft reliability might 

change due to the impact of extreme climate changes, saline environment, and 

events caused by operational usage. Also, battle damage repair and frequent air 

transport might influence availability and reliability of the aircraft. A mission 

deployment module could incorporate all these conditions and extend its 
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capability to make predictions about the impact a possible mission deployment 

might have on fleet performance. This could be of particular interest if only a 

subset of the fleet consisting of a specific aircraft variant is capable of meeting 

mission requirements. To answer this research question, the properties of the 

aircraft objects would have to be extended along with changes in the model logic 

pertaining to new options. The impact of aircraft assignment for mission 

assignments at home and abroad, as well as different failure behavior and 

inspection needs, could be studied with a model modified in this fashion.  

7. Model Updates Due to System Changes 

All models are only as good as the data and the assumptions they are 

based on. Validity of model output will need to be re-evaluated as factors like 

aircraft reliability, failure repair times, or special event probability thresholds 

change over time. Therefore, input factors have to be monitored carefully and 

updated in the model from time to time. This should be done at least once per 

year, preferably twice.   

8. Translation to Excel VBA 

The only analysis resource in the standard work environment in the 

German Army besides SASPF is the Microsoft Office package, which includes 

Microsoft Excel. Since only IT specialists have administrative rights, open source 

software like Python or R is not available or is only available under certain 

circumstances requiring lots of paperwork and allowances. Therefore, this model 

should be translated into Excel VBA so as to be executable on all standard 

German Army computers. Although this work has already begun, finalizing it is 

part of the future work planning. SimpleKit methods, the aircraft object, and basic 

fleet functionalities are already up and running. However, so far it is unclear how 

the model can be ported without losing capability and performance, especially 

with respect to random variate generation and regression analysis. Having input 

parameters, model, and results in one Excel workbook is definitely an advantage 

that should be studied in the future.     
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9. Adaption to Other Weapon Systems 

The model design is generic, which allows adaption to other aircraft types. 

The aircraft object, scheduling mechanism, factor data, and basic functionality 

can easily be adapted to accommodate different aircraft types. Adaptation of the 

maintenance system, however, may be more difficult due to the complexity of 

such systems. Therefore, this represents another potential future project for 

extending the existing model.   

D. FINAL WORDS 

An analysis approach using simulation to gain insight about the systemic 

behavior of an aircraft fleet has never been attempted within the German Army 

aviation forces before. Having an analysis tool that can be used on any standard 

computer and be used to produce meaningful assistance for quick-turnaround 

management decision-making is a huge step forward, especially given the 

complexity of the aircraft and the guideline, procedural, and technology 

constraints that fleet managers must confront. The German Army now has the 

capability to make the most out of its operational fleet data. If maintained 

properly, the model’s flexible architecture is adaptable to any kind of system 

changes in the future, and can incorporate other flying weapon systems. This 

thesis is the first exploration into uncharted waters, and should be considered as 

a guide for future analysis projects and further tool development to support fleet 

management.  
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